Research Report on the Development Trend Analysis and Future Investment Strategy Consulting of the Food Packaging Industry from 2025 to 2030 Abstract

This report aims to construct a panoramic and dynamic analytical framework to gain insight into the strategic evolution path of the global and Chinese food packaging industry from 2025 to 2030. We have identified three irreversible macro trends: 1) Sustainable development evolving from a compliance requirement to a core competitive dimension; 2) Digital intelligence technology deeply penetrating every link of the industrial chain; 3) The fragmentation of consumer scenarios and diversification of values driving the reconstruction of packaging functions and connotations. Against this backdrop, the report not only quantitatively predicts market scale and competitive landscape but also deconstructs future drivers from micro levels such as material science, intelligent manufacturing, and business models. For the first time, we propose that "ESG-CXO" will become an essential strategic mindset for corporate CEOs, and based on this, we have constructed a three-stage investment portfolio and implementation path covering short-term tactical strikes, medium-term capability building, and long-term ecological positioning. This report serves as a strategic compass for participants in the food packaging industry chain, investors, and policymakers seeking deterministic growth in an era of uncertainty.

Chapter 1: In-depth Analysis of the Development Status and Competitive Pattern of the Food Packaging Industry

- 1.1 Panoramic View of the Global and Chinese Food Packaging Industry Market Status
- 1.1.1 Global Market: Multi-dimensional Perspective of Structural Differentiation and Growth Drivers

The global food packaging market size in 2023 was 368.2 billion USD, not a homogeneous whole, but experiencing profound internal restructuring. It is expected to exceed 530 billion USD by 2030, showing distinct regional and technological stratification.

- Asia-Pacific Region (Growth Core, CAGR 7.5%):
 - Quantitative Analysis of Driving Forces:
 - 1. **Demographic Dividend**: The region has over 60% of the global population, with a median age below 30 in countries like India and Indonesia, forming a natural consumer base for packaged foods.
 - 2. **Middle-Class Expansion**: The Asian Development Bank predicts that the middle-class population in Asia-Pacific will increase by 1.5 billion by 2030, directly driving demand for branded and safe packaging.
 - 3. **E-Commerce Explosion**: Southeast Asia's e-commerce GMV is expected to grow at an annual rate of over 20% from 2023 to 2030, directly spawning packaging solutions optimized for "last-mile" logistics.
- North American Market (Value Highland, CAGR 5.1%):
 - Innovation-Driven Model:
 - 1. **Commercialization of Smart Packaging**: The U.S. market has the highest acceptance of AR interactive packaging and smart labels. For example, Diageo's Johnnie Walker Blue Label whiskey uses NFC tags,

- allowing consumers to access exclusive content by scanning, increasing product premium by 15%.
- 2. **Extreme Convenience Demand**: Microwaveable pouches, self-heating packaging (e.g., HeatGen technology for coffee), and precise dosing packaging (e.g., salad dressing squeeze bottles with scales) are the fastest-growing categories.
- European Market (Rule Maker, CAGR ~4.5%):
 - Policy-Led Paradigm Revolution:
 - 1. **EU Green Deal Impact**: The target of 75% packaging recyclability by 2030 is reshaping industry rules from the design end, promoting mono-material packaging, simplified labels, and reusable systems like Coca-Cola's Universal Bottle project.
 - 2. **EPR Fees and Carbon Tariffs**: Increasingly stringent EPR systems internalize end-of-life packaging costs, and CBAM signals that product carbon footprints will become hard trade barriers.
- **1.1.2 Chinese Market: Structural Transition in a Massive Market** The market size was 168 billion RMB in 2022, expected to leap to 290 billion RMB by 2025, driven by a fundamental shift in growth logic.
 - E-Commerce Packaging "Value Upgrade":
 - o **From "Wrapable" to "Well-Wrapped"**: Functional fresh-keeping packaging demand grows at 18% annually, driven by:
 - 1. **Cold Chain Packaging Tech Iteration**: Shift from traditional ice packs to precise temperature-controlled composite phase-change materials (0-4°C or -18°C). EPS boxes are being replaced by ecofriendly, high-strength paper-based insulation boxes.
 - 2. Smart Anti-Counterfeiting & Traceability: "One Item One Code" has evolved from anti-counterfeiting to an integrated data portal for traceability, marketing, and membership management. For example, Moutai uses blockchain to make each bottle's flow information immutable, greatly enhancing consumer trust.
 - Category-Driven Packaging Innovation:
 - 1. **Pre-made Meal Packaging**: Must solve the triangle dilemma of "physical performance" (steam-resistant, leak-proof, drop-resistant), "chemical performance" (low migration, flavor preservation), and "user experience" (easy opening, easy storage).
 - 2. **New Tea & Coffee Packaging**: PET bottles continue to erode metal cans' share in ready-to-drink tea due to transparency. Coffee packaging emphasizes the combination of functional one-way degassing valves and artistic illustrations.

1.2 Industry Competitive Pattern and Enterprise Core Capability Reconstruction

1.2.1 Leading Enterprises: From "Manufacturers" to "Value Chain Integrators"

 Tetra Pak: Its moat lies not only in aseptic packaging patents but in building a super ecosystem of "equipment + packaging + services". Customers are deeply locked into its packaging system once adopting its filling equipment. Its "factory management

- services" help optimize whole-line efficiency, maintaining gross margins above 30%.
- Amcor: Core strategy is "global layout, local operation". Through frequent M&A (e.g., Bemis), it quickly strengthened its flexible packaging capabilities. Its core competitiveness lies in providing global consistent standards and supply chain assurance for multinational giants like P&G and Nestlé.
- Aoruijin: Its symbiotic relationship with China Red Bull is a classic case. Through a
 "follow-up factory building" strategy, it locates production bases next to customer
 factories, achieving JIT supply and greatly reducing logistics and inventory costs.
 Recently, it entered the beverage can market by acquiring Ball's China business,
 expanding its second growth curve.

1.2.2 SMEs: Building "Antifragile" Structures in "Niche Markets"

- Technology Specialization Type: For example, an SME specializing in precise gas
 ratio control technology for modified atmosphere packaging, achieving >99.9% gas
 replacement rate, provides irreplaceable value for high-end chilled meat brands,
 avoiding price wars with giants.
- Service Agility Type: Usually no minimum order quantity, providing "7-day sampling, 15-day delivery" extreme service, perfectly fitting the rapid launch and market testing needs of new consumer brands like Perfect Diary and Florasis.
- Digital Empowerment Type: Using cloud collaboration platforms, clients can
 participate in design reviews in real-time, and provide near-real samples via 3D
 printing within 24 hours, compressing traditional weeks-long communication and
 sampling cycles to days.

1.2.3 New Entrant Threats: Vertical Compression and Horizontal Disruption of the Value Chain

- **E-Commerce Platforms (Rule Reshapers)**: Amazon's "Frustration-Free Packaging" plan forces thousands of brands to abandon personalized packaging designs and adopt platform-specified standard box types, directly impacting packaging design and midstream manufacturing enterprises.
- Food Brands (Backward Integration): To ensure core technology and supply chain security, large food enterprises like Yili and Nongfu Spring have established packaging R&D departments or even self-built packaging plants, posing 苛刻 requirements to traditional packaging enterprises: "Either provide what I can't do, or provide better costs."

1.3 Industry Chain Structure and Key Link Value Distribution

1.3.1 Upstream Raw Materials: Green Inflation and Technical Game

- Plastics: Crude oil prices and "plastic bans" are two major cost variables. The EU "Plastic Packaging Tax" (€0.8/kg tax on non-recycled plastic packaging) is forcing global brands to purchase recycled plastics. Currently, food-grade rPET prices are 20%-30% higher than virgin PET, with tight supply.
- Paper Products: Wood pulp prices are greatly affected by global supply and shipping
 costs. The "paper-for-plastic" trend has led to soaring demand for food-grade white
 cardboard and liquid packaging paper. However, energy consumption and
 wastewater treatment in pulp molding production are potential bottlenecks for full
 promotion.

• **Metals**: Aluminum's infinite recyclability and energy-saving characteristics (95% energy saved in recycling) have led to a continuous increase in its share in beverage packaging. Giants like Ball Corporation are heavily investing in closed-loop recycling systems to consolidate raw material advantages.

1.3.2 Midstream Production Equipment: Deterministic Trend of Intelligence

- **Digital vs. Traditional Printing**: Although digital printing has higher unit costs, it has absolute advantages in short-run business: zero plate-making fees, quick order change, personalized customization. We estimate that for orders below 50,000 units, the comprehensive cost of digital printing is already lower than gravure printing. Its market penetration is rising from the current 15% to 30% by 2030.
- Al Visual Inspection ROI Model: A 1 million RMB Al inspection system can replace 6 inspectors working in three shifts. Based on an annual salary of 80,000 RMB, annual labor cost is 1.44 million RMB. The system can reduce missed detection rate from 2% to 0.1%. Assuming average customer claims of 10,000 RMB per case due to quality issues, annual claims drop from 100 to 5, saving 950,000 RMB. The investment recovery period is only 8-10 months.

1.3.3 Downstream Food & Beverage Industry: Micro Insights into Demand Changes

- **Healthification**: The clean label movement has spread from food ingredients to packaging. Consumers are concerned about potential migrants like phthalates and bisphenol A in packaging, driving the adoption of water-based inks, UV-LED cured inks, and bio-based adhesives.
- **Socialization**: Packaging has become a "photo backdrop". Packaging with strong stylistic designs like "national trend", "minimalism", and "cuteness" is more likely to inspire spontaneous social media sharing.
- Adaptation to Aging Society: Developing easy-open lids (e.g., effortless opening), large-print instructions, and anti-fraud packaging (e.g., obvious marks after first opening) for the elderly will become important niche markets.

Chapter 2: Technology-Driven and Future Development Trend Forecast

2.1 New Materials and Environmental Technologies: From Laboratory to Commercialization Critical Point

2.1.1 Biodegradable and Bio-based Materials: Race Between Performance and Cost

- PLA Dilemma and Breakthrough: Poor heat resistance (<60°C) and brittleness are two major shortcomings. Current solutions include: 1) Copolymerization with PDO to form PTT, improving toughness; 2) Compounding with inorganic nanoparticles (e.g., nano calcium carbonate) to improve heat resistance and mechanical properties. It is expected that by 2027, high-performance PLA costs will drop to the level of ABS plastics.
- PHA: Star of the Future: PHA is synthesized by microorganisms, with properties close
 to PP, and can completely degrade in marine and soil environments. The key to
 industrialization lies in cultivating "halophilic bacteria" that can grow in seawater,
 greatly reducing sterilization costs and freshwater consumption during fermentation.
 Danimer Scientific is a leader in this field, and its cooperation with PepsiCo to develop
 PHA bottled water packaging is an industry milestone.
- Paper-based Barrier Coating Tech Routes: Traditional PE lamination is not

conducive to recycling. New-generation barrier coatings include: 1) Water-based acrylic coating: oil-resistant, with certain moisture barrier. 2) Silicon oxide vapor-deposited film: excellent barrier but high cost and poor toughness. 3) Chitosan bio-based coating: from shrimp and crab shells, with barrier and antibacterial properties, is a cutting-edge research direction.

2.1.2 Nanotechnology: Reconstructing Packaging Performance at Molecular Level

- Nano-silver Antibacterial Packaging: Silver ions achieve broad-spectrum
 antibacterial by destroying cell membranes and enzyme systems. The application key
 is to control silver ion migration rate, ensuring long-term antibacterial effect without
 exceeding food safety migration limits. Currently widely used in fresh-cut fruit and
 chilled meat tray packaging.
- Nano-cellulose: Extracted from wood pulp, its strength is 5 times that of steel, and weight is only 1/5. Adding it to plastics at 1%-5% can significantly improve material strength and modulus, achieving ultra-lightweight. Moreover, it is transparent and can be used to manufacture high-transparency biodegradable films.

2.1.3 Active and Smart Labels: Making Packaging "Alive"

- Active Packaging Tech Classification:
 - 1. Oxygen Absorbers: Most common are iron-based, with reaction equation: $4\text{Fe} + 3\text{O}_2 + 6\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_3$. One gram of iron powder can absorb about 300ml of oxygen.
 - 2. **Ethylene Absorbers**: Based on potassium permanganate oxidation, mainly used to delay post-ripening of fruits and vegetables.
 - 3. **Ethanol Releasers**: Encapsulated in small bags, slowly releasing ethanol vapor to inhibit mold growth, commonly used in baked foods.

Smart Label Commercialization Path:

- 1. **Time-Temperature Indicators**: Full-history TTI (e.g., Vitsab's enzyme-based label) can accumulate temperature changes throughout circulation; critical TTI (e.g., 3M's label) only undergoes irreversible color change when temperature exceeds a threshold. The latter is cheaper and more suitable for mass consumer goods.
- 2. **Freshness Indicators**: Based on pH changes. When fish spoilage produces volatile amines, it causes dye pH change and color change in the label. FreshTag is a representative of this technology.

2.2 Intelligent Manufacturing and Digital Production Models: Reshaping the Value Chain 2.2.1 Deep Penetration of Industry 4.0: From "Automation" to "Autonomy"

- Closed-loop Application of Digital Twins: Building production line models in virtual worlds, driven by real-time data, can achieve: 1) Process parameter optimization: e.g., simulating sealing effects under different temperatures and pressures to find optimal parameters. 2) Predictive maintenance: Analyzing motor vibration data to warn of bearing failures 2 weeks in advance. 3) New employee training: Operating in virtual environments with zero risk and zero material waste.
- Edge Computing Based on 5G: Deploying 5G gateways on production lines, realtime processing of massive image data from AI quality inspection cameras on edge servers, achieving microsecond-level response and avoiding latency from cloud

transmission.

2.2.2 3D Printing Technology: From Prototype Manufacturing to Distributed Production

- Application Scenario Expansion:
 - 1. **Customized Molds**: For producing molds with complex textures for chocolate and ice cream, difficult to achieve with traditional CNC processing.
 - 2. **Small-batch High-end Packaging**: e.g., limited edition perfume or liquor bottles for luxury brands, using 3D printed wax molds for precision casting.
- Material Innovation: The emergence of high-toughness photosensitive resins and food-grade nylon allows 3D printed packaging components to be used not only for prototypes but also directly as parts of final products.

2.3 Circular Economy and Sustainable Development: From Concept to Imperative

2.3.1 Packaging Lightweight Design: Combination of Engineering and Materials Science

- **Finite Element Analysis**: Through computer simulation of packaging stress during stacking and transportation, "hole-making" or "thinning" non-critical load-bearing parts to maximize material reduction while ensuring performance. P&G's Head & Shoulders shampoo bottle achieved 15% weight reduction through this technology.
- Foaming Technology: MuCell microcellular injection molding technology injects supercritical fluids (nitrogen or CO₂) into plastic melt, forming micron-level bubbles, reducing product weight by 5%-20% and shortening molding cycles.

2.3.2 Commercialized Closed-loop Construction of Recycling Systems: Tech and Model Innovation

- Al Sorting Technology: Using hyperspectral cameras combined with Al algorithms
 in sorting centers can accurately identify different colors and types of plastics,
 improving PET bottle sorting purity from 85% to over 98%, greatly enhancing recycled
 material value.
- Commercial Breakthrough of Chemical Recycling: For heavily contaminated flexible plastic packaging, pyrolysis technology can 还原 it into pyrolysis oil for reuse as chemical raw material. Eastman has built large-scale facilities to convert waste polyester fibers and packaging into virgin-quality PET.

2.3.3 Carbon Footprint Certification: New International Trade Barrier and Green Financing Tool

- Life Cycle Assessment is the basis for calculating carbon footprints. Enterprises
 need to establish product carbon footprint inventories, covering the entire
 process from raw material acquisition, transportation, production to waste
 disposal.
- Green Finance: Enterprises with authoritative carbon footprint certifications can more
 easily obtain green credits and sustainability-linked bonds, with interest rates usually
 tied to ESG performance target achievement.

Chapter 3: Market Prospects, Policy Environment and Systematic Investment Strategy Recommendations

- 3.1 Market Demand Forecast and Niche Market Gold Mining from 2025-2030
- 3.1.1 Cold Chain Food Packaging: Precise Layout in Golden Track
 - Market Size and Growth Quantification: It is estimated that from 2025-2030,
 China's cold chain food packaging market will maintain a CAGR of 12%-15%, far

exceeding the industry average, reaching over 80 billion RMB by 2030.

• Core Driving Force Decomposition:

- Structural Upgrade of Pre-made Meals: Ready-to-cook and ready-to-eat pre-made meals have the highest cold chain freshness requirements, with packaging costs accounting for 15%-20% of total product costs, far higher than 5% for ready-to-match meals. This requires packaging with high barrier properties (anti-odor, flavor preservation), steam resistance (above 100°C), and excellent seal strength.
- 2. **Spillover Effect of Biopharmaceutical Cold Chain**: The global distribution of mRNA vaccines has popularized ultra-low temperature (-70°C) packaging solutions, such as passive temperature control systems based on dry ice. These high-end technologies are gradually 下沉 to high-end food (e.g., wagyu beef, bluefin tuna) cold chain logistics.

Technology Investment Focus:

- 1. **Phase Change Materials**: Invest in R&D of fixed-temperature PCM to achieve precise temperature control by absorbing or releasing large amounts of heat within specific narrow temperature ranges (e.g., 0-4°C or -18°C).
- 2. **Smart Monitoring Integration**: Invest in solutions integrating low-power Bluetooth temperature recorders with packaging. The recorder cost has dropped to within 20 RMB/unit, reusable, with full temperature data readable via mobile APP, a powerful tool for high-end brands to build trust.
- 3. **Structural Innovation**: Pay attention to rental and sharing models of foldable, stackable 循环 insulation boxes. If single-use cost can be lower than disposable foam boxes, there will be huge market potential.

3.1.2 Pre-made Meals and Convenience Food Packaging: Value Depression of Scenario-Based Design

- Demand Stratification and Packaging Countermeasures:
 - 1. **B-end Market (Restaurants, Canteens)**: Pursues ultimate cost efficiency. Packaging requires large capacity, easy stacking, and quick unpacking. 10kg composite bags and high-strength PP barrels are mainstream. Investment opportunities lie in optimizing design to reduce material usage by 5%-10% while ensuring strength.
 - 2. **C-end Market (Households, Individuals)**: Pursues experience and convenience. Needs to solve three pain points:
 - "Kitchen Novice" Friendly: Packaging needs to clearly indicate operation steps and design easy-tear openings and anti-scalding structures.
 - o **"Single Serving" Economy**: Promotes 200-400g small portion packaging growth, requiring packaging to be usable as tableware directly after microwave heating (CPET trays are mainstream choice).
 - o "Air Fryer" Adaptation: Developing packaging materials that can withstand temperatures above 200°C without harmful substance migration (e.g., crystalline PET or special paper-based composites) is a clear technical gap and investment opportunity.

 Material Innovation Direction: Invest in production technology of high-barrier transparent retort films, which can see contents clearly while replacing opaque aluminum foil composite structures, more conducive to microwave heating and recycling.

3.1.3 High-end Health Products and Functional Food Packaging: Carrier of Trust Economy

• **Premium Space Analysis**: High-end health product packaging costs can reach 25%-35% of total product costs, with value reflected in building safety, technology sense, and brand trust.

Investment and Technology Focus:

1. Active Protection System:

- UV Blocking Technology: Adding cerium oxide or zinc oxide nanoparticles in glass or plastic bottles can effectively block UV rays and prevent failure of light-sensitive ingredients like vitamins and probiotics.
- Oxygen Absorbing Inner Cap: Integrating oxygen absorbers into cap lining to continuously absorb oxygen inside the bottle after opening, maintaining extremely low oxygen levels during shelf life.

2. Smart Anti-Counterfeiting and Interaction:

- o **Blockchain Traceability**: Giving each product a unique digital identity, recording full process information from raw materials, production, quality inspection to logistics. Consumers can verify authenticity and understand the "past life" by scanning codes. Such SaaS services charge annual fees ranging from 100,000 to 500,000 RMB, an investment direction for high-end markets.
- o **AR Experience**: Scanning packaging can 观看 product stories, expert interpretations, or 3D animations, upgrading packaging from a "container" to a "traffic portal" and "education tool".

3. Humanized Design:

- Senior-Friendly Packaging: Invest in child-safe caps while developing adult-safe caps that are easy to open and provide clear tactile/auditory feedback.
- Precise Dosing Design: e.g., developing bottles with quantitative droppers or one-pill-push structures to enhance user experience and medication compliance.

3.2 Policy Regulations and Industry Standard Evolution: Risks and Opportunities Coexist 3.2.1 Global Upgrade of "Plastic Ban" and Industrial Chain Shockwaves

Global Policy Map:

- 1. **EU**: SUP directive completely bans oxidatively degradable plastic products and EPS food containers. Plans to impose substantial taxes on non-recycled plastic packaging by 2025.
- 2. **US**: Although no federal unified ban, states like California and New York have strict plastic restrictions.
- 3. China: The "14th Five-Year" plastic pollution control action plan clearly

requires that by 2025, the consumption intensity of non-degradable disposable plastic tableware in food delivery in cities above prefecture level will decrease by 30%.

Enterprise Response Strategy Cost-Benefit Analysis:

- 1. **Transition Cost**: Retrofitting a traditional PE-coated paper cup production line to PLA-coated costs about 500,000-1 million RMB, with PLA raw material costs currently 1.5-2 times that of PE.
- 2. **Non-Transition Risk**: Faces huge risks of product delisting, fines, and brand image damage. For export-oriented enterprises, EU plastic taxes will directly increase packaging costs using virgin plastics by over 20%.
- 3. **Investment Advice**: Prioritize investing in alternatives like pulp molding and plant fiber tableware that have achieved scale effects and declining costs. Meanwhile, closely monitor the industrialization progress of next-generation fully biodegradable materials like PHA.

3.2.2 "Microscope" Control of Food Safety Regulations and Supply Chain Responsibility

- Regulation Upgrade Focus:
 - Non-Intentionally Added Substances Control: Requires enterprises to conduct risk assessments and establish control plans for all possible impurities in supply chains (e.g., mineral oil in printing inks, contaminants in recycled materials).
 - 2. **Expanded Migration Simulation Liquid Scope**: EU 10/2011 regulation requires testing with more food simulants, especially for acidic, high-alcohol, and fatty foods.

Compliance Solution Investment:

- 1. Invest in third-party testing labs or self-build high-standard testing centers, transforming them from cost centers to core competitiveness.
- 2. Invest in supply chain digital traceability platforms, achieving full-chain information transparency from raw material particles to final packaging, enabling precise recalls and minimizing losses in case of issues.

3.3 Investment Risk Assessment and Strategic Choice

3.3.1 Core Risk Identification and Quantification Matrix We construct a risk matrix assessing from occurrence probability and impact degree:

表格

复制

Risk Factor	Occurrence Probability	Impact Degree	Risk Level	Response Strategy
Raw Material Price Fluctuation	High	High	Red	Diversify procurement, futures hedging, price linkage mechanisms.
Technology Disruptive	Medium	High	Red	Set up internal innovation incubator, invest in frontier

Risk Factor	Occurrence Probability	Impact Degree	Risk Level	Response Strategy
Substitution				tech scanning and VC.
Policy Compliance Risk	High	Medium	Orange	Set up compliance officer, hire professional legal advisors, participate in standard setting.
Emerging Market Localization Failure	Medium	Medium	Orange	Joint venture model, hire local teams, conduct indepth cultural research.
Exchange Rate Fluctuation	Medium	Medium	Orange	Use financial instruments for exchange rate locking.

3.3.2 Strategic Choice Matrix: Positioning Your Battlefield Based on market scope and competitive advantages, enterprises can choose the following strategic positions:

- 1. Cost Leadership Strategy (Broad Market):
 - Target: Large-scale production enterprises.
 - **Core Capabilities**: Automated production lines, lean management, bulk raw material purchasing bargaining power.
 - **Investment Direction**: Continuously invest in energy-saving equipment and ERP/MES systems to improve operational efficiency.
- 2. Differentiation Focus Strategy (Niche Market):
 - **Target**: Small and medium-sized innovative enterprises.
 - **Core Capabilities**: Unique tech patents, agile design services, deep customer insights.
 - **Investment Direction**: Invest in rapid prototyping tech like 3D printing and market activities to build vertical field expert brand image.
- 3. Ecological Integration Strategy (Full Market):
 - Target: Industry leaders or large industrial capital.
 - **Core Capabilities**: Capital strength, resource integration ability, platform building ability.
 - **Investment Direction**:补齐 product lines or tech 短板 through M&A, invest in building circular economy closed loops (from recycling to regeneration), or establish industrial internet platforms connecting upstream and downstream.

Chapter 4: Future Investment Strategic Framework and Phased Implementation Path 4.1 Short-term Investment Focus Areas (2025-2027): Seize the Track, Layout Core 4.1.1 Bio-based Material Production Equipment and Tech Patents: Build Green Barriers

• In-depth Investment Logic Analysis: Policy-driven markets are "rigid" but "have time windows". Investment should focus on solving current core pain points of bio-

based materials: cost and performance.

- Specific Investment Targets and Return Forecasts:
 - 1. PLA High-efficiency Polymerization Catalyst Tech: Invest in R&D companies that can increase lactide conversion from 95% to over 99.5%. This can reduce PLA production costs by 10%-15%, with returns from tech licensing fees or future M&A exits by chemical giants.
 - 2. **PHA "Next-gen Fermentation Tech"**: Focus on startups using synthetic biology to modify microbial strains to efficiently synthesize PHA from kitchen waste or industrial wastewater. Such tech can disrupt PHA cost structures, with expected investment cycle of 5-7 years but hundredfold return potential upon success.
 - 3. **Bio-based Material Special Modification and Processing Equipment**: Invest in manufacturers solving PLA toughness and heat resistance issues with reactive extruders and nano-compounding dispersion equipment. Such equipment vendors will grow steadily with material industry development.

4.1.2 Smart Packaging Solution Suppliers: Capture Data Value

- Acquisition Target Screening Criteria:
 - 1. **Tech Uniqueness**: Own UHF RFID chip design capability or tech to integrate sensors cost-effectively via printed electronics on packaging.
 - 2. **Data Monetization Ability**: Smart packaging solutions not only provide anticounterfeiting traceability but also offer consumer behavior data (e.g., opening location-end brands to build trust.
 - 3. **Structural Innovation**: Focus on rental and sharing models for foldable, stackable recyclable insulation boxes. If single-use cost can be lower than disposable foam boxes, huge market potential exists.

3.1.2 Pre-made Meals and Convenience Food Packaging: Value Depression of Scenario-based Design

- Demand Stratification and Packaging Countermeasures:
 - B-end Market (Restaurants, Canteens): Pursues ultimate cost efficiency. Requires large capacity, easy stacking, and quick unpacking. 10kg compound bags and high-strength PP barrels are mainstream. Investment opportunities lie in optimizing design to reduce 5%-10% material usage while ensuring strength.
 - 2. **C-end Market (Households, Individuals)**: Pursues experience and convenience. Needs to solve three pain points:
 - "Kitchen Novice" Friendly: Packaging needs clear operation steps and easy-tear openings with anti-scalding structures.
 - o **"Single Serving" Economy**: Promotes 200-400g small portion packaging growth, requiring packaging to double as tableware after microwave heating (CPET trays are mainstream choice).
 - o "Air Fryer" Adaptation: Developing packaging materials that can withstand temperatures above 200°C without harmful substance migration (e.g., crystalline PET or specialty paper-based composites) is a clear technical gap and investment opportunity.

• Material Innovation Direction: Invest in production technology of high-barrier transparent retort films that can see contents while replacing opaque aluminum foil composite structures, more suitable for microwave heating and recycling.

3.1.3 High-end Health Products and Functional Food Packaging: Carrier of Trust Economy

Premium Space Analysis: High-end health product packaging costs can reach 25%-35% of total product cost, with value reflected in building safety, technological sense, and brand trust.

Investment and Technology Focus:

1. Active Protection Systems:

- UV Blocking Technology: Adding cerium oxide or zinc oxide nanoparticles to glass or plastic bottles can effectively block UV rays, preventing failure of light-sensitive ingredients like vitamins and probiotics.
- Oxygen Absorbing Bottle Liner: Integrating oxygen absorbers into bottle cap liners for continuous oxygen absorption after opening, maintaining extremely low oxygen levels during shelf life.

2. Smart Anti-counterfeiting and Interaction:

- o **Blockchain Traceability**: Giving each product a unique digital identity, recording full process information from raw materials, production, quality inspection to logistics. Consumers can verify authenticity and learn the "past life" by scanning codes. Such SaaS service annual fees range from 100,000 to 500,000 RMB, an investment direction for high-end markets.
- AR Experience: Scanning packaging to watch product stories, expert explanations or 3D animations, upgrading packaging from "container" to "traffic entrance" and "education tool".

3. Humanized Design:

- Senior-friendly Packaging: While investing in child-safe caps, develop adult-safe caps that are easy to open and provide clear tactile/auditory feedback.
- Precise Dosage Design: e.g., developing bottles with quantitative droppers or one-pill-push structures to enhance user experience and medication compliance.

3.2 Policy Regulations and Industry Standard Evolution: Risks and Opportunities Coexist 3.2.1 Global Upgrade of "Plastic Ban" and Industry Chain Shockwaves

Global Policy Map:

- 1. **EU**: SUP directive completely bans oxidatively degradable plastic products, foamed polystyrene food containers, etc. Plans to impose substantial taxes on non-recycled plastic packaging by 2025.
- 2. **USA**: Though no federal unified ban, California, New York and other states have introduced strict plastic restriction regulations.
- 3. **China**: The "14th Five-Year" plastic pollution control action plan clearly requires that by 2025, the consumption intensity of non-degradable

disposable plastic tableware in food delivery in cities above prefecture level will decrease by 30%.

• Cost-benefit Analysis of Corporate Response Strategies:

- 1. **Transformation Cost**: Retrofitting a traditional PE-coated paper cup production line to PLA-coated line costs about 500,000-1,000,000 RMB in equipment modification, and PLA raw material cost is currently 1.5-2 times that of PE.
- 2. **Risk of Not Transforming**: Faces huge risks of product delisting, fines, and brand image damage. For export-oriented enterprises, EU plastic tax will directly increase packaging cost using virgin plastics by over 20%.
- 3. **Investment Advice**: Prioritize investment in alternatives like paper pulp molding and plant fiber tableware that have formed scale effects and continuously declining costs. Meanwhile, closely monitor industrialization progress of next-generation fully biodegradable materials like PHA.

3.2.2 "Microscope" Control of Food Safety Regulations and Supply Chain Responsibility

Regulation Upgrade Focus:

- 1. **Control of Non-intentionally Added Substances becomes new focus. Requires enterprises to conduct risk assessments and establish control plans for all possible impurities in supply chains (e.g., mineral oil in printing inks, contaminants in recycled materials).
- 2. **Expansion of Migration Simulation Liquid Scope**: EU 10/2011 regulation requires testing with more types of food simulants, especially for acidic, high-alcohol and fatty food simulations.

Compliance Solution Investment:

- 1. **Invest in third-party testing laboratories or build self-owned high-standard testing centers, transforming them from cost centers to core competencies.
- 2. **Invest in supply chain digital traceability platforms to achieve full-chain information transparency from raw material particles to final packaging products, enabling precise recall once problems occur to minimize losses.

3.3 Investment Risk Assessment and Strategic Choice

3.3.1 Core Risk Identification and Quantification Matrix

We construct a risk matrix for assessment from two dimensions of occurrence probability and impact degree:

Risk Factor Occurrence Probability Impact Degree Risk Level Response Strategy Raw Material Price Fluctuation High High Red Build diversified procurement, futures hedging, price linkage mechanisms.

Disruptive Technology Substitution Medium High Red Establish internal innovation incubator, invest in frontier technology scanning and venture investment.

Policy Compliance Risk High Medium Orange Establish compliance officer position, hire professional legal advisors, participate in standard setting.

Emerging Market Localization Failure Medium Medium Orange Adopt joint venture model, hire local teams, conduct in-depth cultural research.

Exchange Rate Fluctuation Medium Medium Orange Use financial instruments for

exchange rate locking.

3.3.2 Strategic Choice Matrix: Position Your Battlefield

Based on market scope and competitive advantages, enterprises can choose the following strategic positions:

- Cost Leadership Strategy (Broad Market):
 - 1. **Target**: Large-scale production enterprises.
 - 2. **Core Capabilities**: Automated production lines, lean management, bulk raw material procurement bargaining power.
 - 3. **Investment Direction**: Continuously invest in energy-saving equipment and ERP/MES systems that improve operational efficiency.
- Differentiation Focus Strategy (Niche Market):
 - 1. **Target**: Small and medium-sized innovative enterprises.
 - 2. **Core Capabilities**: Unique technology patents, agile design services, deep customer insights.
 - 3. **Investment Direction**: Invest in rapid prototyping technologies like 3D printing and market activities that build vertical field expert brand image.
- Ecosystem Integration Strategy (Full Market):
 - 1. **Target**: Industry leaders or large industrial capital.
 - 2. **Core Capabilities**: Capital strength, resource integration ability, platform building ability.
 - 3. **Investment Direction**: Fill product lines or technology gaps through M&A, invest in building circular economy closed loops (from recycling to regeneration), or establish industrial internet platforms connecting upstream and downstream.

Chapter 4: Future Investment Strategy Framework and Phased Implementation Path 4.1 Short-term Investment Focus Areas (2025-2027): Seize Track, Layout Core 4.1.1 Bio-based Material Production Equipment and Technology Patents: Build Green Barriers

- In-depth Analysis of Investment Logic: Policy-driven markets are "rigid" but have "time windows". Investment should focus on solving current core pain points of bio-based materials: cost and performance.
- Specific Investment Targets and Return Forecasts:
 - PLA High-efficiency Polymerization Catalyst Technology: Invest in R&D companies that can increase lactide conversion rate from 95% to over 99.5% with new catalysts. This can reduce PLA production costs by 10%-15%, with investment returns coming from technology licensing fees or future acquisition by chemical giants.
 - 2. "Next-generation Fermentation Technology" for PHA: Focus on startups that use synthetic biology to modify microbial strains to efficiently synthesize PHA from kitchen waste or industrial wastewater as "food". Such technology can disrupt PHA cost structures, with expected investment cycles of 5-7 years but hundred-fold return potential upon success.
 - 3. **Bio-based Material Dedicated Modification and Processing Equipment**: Invest in manufacturers of reactive extruders and nano-compound dispersion

equipment that can solve PLA's insufficient toughness and poor heat resistance. Such equipment suppliers will grow steadily with material industry development.

4.1.2 Smart Packaging Solution Providers: Capturing Data Value

- Acquisition Target Screening Criteria:
 - Technical Uniqueness: Possess independent design capabilities for UHF RFID
 chips or technology to low-cost integrate sensors on packaging through
 printed electronics.
 - 2. **Data Monetization Ability**: Their smart packaging solutions can not only provide anti-counterfeiting traceability but also offer consumer behavior data for brands (e.g., opening location, frequency, associated purchases), forming data closed loops.
- Investment Case Simulation: Assume investing in Company A with core TTI label technology for temperature sensing, with label cost of 0.5 RMB/unit. In the high-end ice cream market, assuming annual demand of 100 million units and Company A capturing 30% market share, annual revenue would be 15 million RMB. Considering its technical barriers and 50% gross margin, Company A's valuation could reach 80-100 million RMB.

4.1.3 Regional Recycling Network Infrastructure: Card Positioning in Circular Economy Entry

- Business Model Innovation:
 - 1. "Recycling+" Model: Invest in building community recycling stations that integrate packaging recycling with household services and express delivery convenience services to increase traffic and user stickiness.
 - 2. "IoT + Recycling": Invest in smart recycling bins where residents earn points for recycling, with data uploaded to cloud platforms in real-time to optimize collection routes and reduce operating costs.
- Policy Bonus Utilization: Such projects align with national "zero-waste city" construction. Actively applying for circular economy special funds and tax reductions at all levels of government can effectively reduce initial investment pressure. It is estimated that an intelligent recycling network covering a city of 5 million people requires initial investment of about 200-300 million RMB, with an investment recovery period of about 6-8 years.

4.2 Medium and Long-term Strategic Directions (2028-2030): Build Ecosystem, Define Future

4.2.1 Full Life Cycle Carbon Management System Development: From Compliance to Competitiveness

- System Architecture and Value:
 - 1. **Functional Modules**: Should include automatic carbon data collection, LCAs calculation engine, emission reduction path simulation and automatic report generation.
 - 2. **Customer Value**: Help brands easily cope with EU CBAM and other regulatory requirements; reduce supply chain costs by optimizing carbon footprints; generated credible carbon footprint reports are powerful tools for

green marketing.

 Profit Model: Adopt SaaS subscription model, charging annual fees ranging from 100,000 to several million RMB based on enterprise scale and number of products accounted for. The market space is huge, with all export-oriented enterprises and those with green ambitions being potential customers.

4.2.2 Cross-industry Collaborative Innovation Platform Construction: From Competition to Win-win

- Platform Operation Model:
 - 1. **Initiator**: Jointly initiated by industry leading enterprises or industrial capital.
 - 2. **Core Tasks**: 1) Establish standardized packaging specifications; 2) Jointly build reverse logistics and washing centers; 3) Jointly develop environmentally friendly new materials.
- Investment Value and Risk: Such platforms have network effects. Once established, they will become industry infrastructure with huge value. However, the risk lies in the difficulty of coordinating interests among all parties, requiring strong leading parties and clear benefit distribution mechanisms. It is recommended to invest in the form of limited partnership special funds.

4.2.3 Digital Supply Chain Finance Empowering SMEs: Activating Industrial Ecology

- **Technical Foundation**: Relies on blockchain technology to ensure authenticity and immutability of transaction data (e.g., accounts receivable, warehouse receipts).
- Operation Process:
 - 1. Packaging enterprises receive electronic orders and promised payments from brands.
 - 2. This order information generates digital creditor's rights vouchers on blockchain.
 - 3. Packaging enterprises can split and transfer these vouchers to upstream raw material suppliers, or apply for financing from financial institutions cooperating with the platform.
 - 4. Financial institutions quickly grant loans based on credit of core enterprises (brands).
- **Investment Opportunity**: Invest in tech companies developing such blockchain supply chain finance platforms or their issued ABS asset-backed securities.

4.3 Risk Hedging and Dynamic Adjustment Mechanism: Building Anti-fragile Organizations

4.3.1 Multi-technology Route Parallel R&D: Option Thinking

- **Application Example**: In biodegradable materials field, simultaneously layout:
 - 1. **PLA (Mature Market)**: As cash cow business, ensuring short-term returns.
 - 2. **PHA (Growth Market)**: As strategic business, with medium-scale investment and pilot projects.
 - 3. **Cellulose-based Materials (Frontier Exploration)**: As venture business, with small funds invested in university labs or early-stage startups.
- Management Mechanism: Establish internal technology review committee to regularly evaluate various technology routes and dynamically adjust resource allocation based on technology maturity and market changes.

4.3.2 Gradient Entry Strategy for Policy-sensitive Markets: Crossing River by Feeling Stones

- Stage 1: Trade Probe (1-2 years): Export products through local agents to test market acceptance and understand policy environment.
- Stage 2: Light-asset Operation (2-4 years): Establish joint ventures with local enterprises, build small-scale assembly lines or distribution centers to reduce policy risks.
- Stage 3: Heavy-asset Investment (After 4 years): After policy stability and market effectiveness are proven, establish wholly-owned factories for localized deep operation.

4.3.3 Long-term Value of Rating Improvement on Capital Attraction: ESG is Financing

- Action Path:
 - 1. **Benchmarking Ratings**: Select MSCI or Sustainalytics ESG rating systems for gap analysis.
 - 2. **Key Breakthroughs**: Set improvement targets and public commitments for high-weight issues (e.g., sustainable raw material procurement, product carbon footprint, circular economy in packaging industry).
 - 3. **Proactive Disclosure**: Publish third-party verified ESG reports annually and actively communicate with rating agencies.
- Capital Value: Enterprises with high ESG ratings can obtain 20-50 basis points interest rate discounts when applying for bank green loans, and can enter investment white lists of top global sovereign funds and pension funds.

Chapter 5: Special Analysis on Development Status of China's Food Packaging Design Industry

5.1 Industry Scale and Growth Drivers: From "Accessory" to "Core"

- Market Scale and Structure Refinement:
 - 1. **Overall Scale**: Growing from 287.6 billion RMB in 2025 to 419.8 billion RMB in 2030, with CAGR of 7.9%. This is driven by the explicit value of design, with excellent packaging design bringing 10%-30% premium to products.
 - 2. **Functional Packaging (35%)**: Its high proportion means brands are willing to pay for design that "solves problems". e.g., self-heating packaging design involves not only structure but also chemical reaction control and user safety, being interdisciplinary complex design.
 - 3. Smart Packaging Application Rate (18%): Though not mainstream, growth curve is steep. Applications have penetrated from high-end liquor and health products to regional specialty agricultural products for telling "origin stories".

Core Driving Force Deep Insights:

- 1. "Emotional Appeal" of Consumption Upgrade:
 - Social Currency: Packaging becomes a symbol of personal taste. e.g., the oriental crystal stone-shaped bottle of Guanxia perfume is itself a decoration, driving users to share on social media.
 - o **Emotional Resonance**: "National trend" packaging is not simple element stacking but establishes cultural identity and emotional connection with young consumers through modern expression of

traditional colors, patterns and culture.

2. "Forced Innovation" by Policy Standards: "Requirements for Restricting Excessive Packaging of Goods" mandatorily requires packaging void ratio, layers and costs to comply. This instead breeds "simple but not simple" design philosophy, pushing designers to create value in material texture, structural ingenuity and craft details, replacing past luxury stacking.

5.2 Industry Chain Structure: Value Reshaping and Power Transfer

- Upstream: Rise of Design-driven Raw Materials:
 - 1. Traditional B2B material suppliers begin establishing designer relations departments, proactively promoting new eco-materials, specialty papers and tactile in-mold label films to design companies for joint innovation.
- Midstream: Business Model Evolution of Design Companies:
 - 1. **Head Design Institutions**: e.g., Panhu Packaging Design Lab, whose business model has upgraded from "project-based" fees to "design investment" model, reducing upfront design fees in exchange for sales share after product launch, deeply binding with clients.
 - 2. **Small and Medium Design Studios**: Survival depends on stylized labels, some specializing in "new Chinese style", others in "anime kawaii style", acquiring customers by establishing reputation in specific circles.
 - 3. **Tech-enabled New Entrants**: Emergence of companies using Al generative design platforms, inputting brand tone and product keywords, Al can generate hundreds of packaging drafts for designer optimization, increasing efficiency several-fold.
- Downstream: Precise Mapping of Food Industry Segmented Needs on Design:
 - 1. **Leisure Food**: Pursues "series sense" and "shelf impact". Design needs to consider standing out from competitors on supermarket shelves while maintaining unified visual language for series products.
 - 2. **Healthy Food**: Design language emphasizes "purity" and "nature", mostly using whitespace, low-saturation colors and original texture of eco-materials.
 - 3. **Regional Specialties**: Packaging design is the "translator of local culture", needing to translate profound regional cultural elements into modern, international visual language, retaining cultural core while conforming to contemporary aesthetics.
- **5.-end brands to build trust. 3. **Structural Innovation**: Focus on rental and sharing models of foldable, stackable circulating thermal boxes. If single-use cost can be lower than disposable foam boxes, huge market potential exists.

3.1.2 Pre-made Meals and Convenience Food Packaging: Value Depression of Scenario-based Design

- Demand Stratification and Packaging Countermeasures:
 - 1. **B-end Market (Restaurants, Canteens)**: Pursues ultimate cost efficiency. Requires large capacity, easy stacking, quick unpacking. 10kg composite bags and high-strength PP barrels are mainstream. Investment opportunities lie in optimizing design to reduce 5%-10% material usage while ensuring strength.
 - 2. C-end Market (Households, Individuals): Pursues experience and

convenience. Needs to solve three pain points:

- o "Kitchen novice" friendly: Packaging needs clear operation steps and easy-tear, anti-scalding structures.
- o "Single-serving" economy: Promotes 200-400g small portion packaging growth, requiring packaging to be microwaveable and directly usable as tableware (CPET trays are mainstream choice).
- "Air fryer" adaptation: Developing packaging materials that can withstand above 200°C without harmful substance migration (e.g., crystalline PET or specialty paper-based composites) is a clear technical gap and investment opportunity.
- Material Innovation Direction: Invest in production technology of high-barrier transparent retort films that can see contents while replacing opaque aluminum foil composites, more suitable for microwave heating and recycling.

3.1.3 High-end Health Products and Functional Food Packaging: Carrier of Trust Economy

- Premium Space Analysis: High-end health product packaging costs can reach 25%-35% of total product costs, with value reflected in building safety, tech sense and brand trust.
- Investment and Technology Focus:
 - 1. Active Protection Systems:
 - UV Barrier Technology: Adding cerium oxide or zinc oxide nanoparticles to glass or plastic bottles can effectively block UV rays, preventing failure of light-sensitive ingredients like vitamins and probiotics.
 - Oxygen-absorbing Inner Cap: Integrating oxygen absorbers into bottle cap liners to continuously absorb oxygen after opening, maintaining extremely low oxygen levels during shelf life.

2. Smart Anti-counterfeiting and Interaction:

- o **Blockchain Traceability**: Giving each product a unique digital identity, recording full process information from raw materials, production, quality inspection to logistics. Consumers can scan to verify authenticity and understand "past life". Such SaaS services cost 100,000-500,000 RMB annually, an investment direction for high-end markets.
- o **AR Experience**: Scanning packaging can view product stories, expert explanations or 3D animations, upgrading packaging from "container" to "traffic entrance" and "education tool".

3. Humanized Design:

- Senior-friendly Packaging: While investing in child-safe caps, develop adult-safe caps that are easy to open and provide clear tactile/auditory feedback.
- Precise Dosage Design: e.g., developing bottles with quantitative droppers or one-pill-push structures to enhance user experience and medication compliance.

3.2 Policy Regulations and Industry Standard Evolution: Risks and Opportunities Coexist 3.2.1 Global Upgrade of "Plastic Ban" and Industrial Chain Shockwaves

Global Policy Map:

- 1. **EU**: SUP directive completely bans oxidatively degradable plastic products, foamed polystyrene food containers, etc. Plans to impose substantial taxes on non-recycled plastic packaging by 2025.
- 2. **USA**: No federal unified ban, but states like California and New York have strict plastic restrictions.
- 3. **China**: "14th Five-Year" plastic pollution control action plan requires that by 2025, non-degradable disposable plastic tableware consumption intensity in food delivery in prefecture-level cities drops by 30%.

Cost-benefit Analysis of Corporate Response Strategies:

- 1. **Transformation Cost**: Converting a traditional PE laminated paper cup production line to PLA lamination costs about 500,000-1,000,000 RMB in equipment modification, with PLA raw material costs currently 1.5-2 times that of PE.
- 2. **Non-transformation Risk**: Faces huge risks of product removal, fines and brand image damage. For export enterprises, EU plastic tax will directly increase packaging costs using virgin plastics by over 20%.
- Investment Recommendation: Prioritize investment in alternatives like paper pulp molding and plant fiber tableware that have achieved economies of scale with continuously declining costs. Meanwhile, closely monitor industrialization progress of next-generation fully biodegradable materials like PHA.

3.2.2 "Microscope-style" Control of Food Safety Regulations and Supply Chain Responsibility

• Regulatory Upgrade Focus:

- 1. **Non-intentionally Added Substances (NIAS) control becomes new focus. Requires enterprises to conduct risk assessments and establish control plans for all possible impurities in supply chain (e.g., mineral oils in printing inks, contaminants in recycled materials).
- 2. **Expanded scope of migration simulation liquids: EU 10/2011 regulation requires testing with more types of food simulants, especially for acidic, high-alcohol and fatty food simulations.

Compliance Solution Investment:

- 1. **Invest in third-party testing laboratories or build self-owned high-standard testing centers, transforming them from cost centers to core competitiveness.
- 2. **Invest in supply chain digital traceability platforms to achieve full-chain information transparency from raw material particles to final packaging, enabling precise recall in case of problems to minimize losses.

3.3 Investment Risk Assessment and Strategic Selection

3.3.1 Core Risk Identification and Quantification Matrix

We construct a risk matrix from two dimensions: probability of occurrence and degree of impact:

复制

Risk Factor	Probability	Impact	Risk Level	Response Strategy
Raw Material Price Fluctuation	High	High	Red	Diversify procurement, futures hedging, price linkage mechanism
Disruptive Technology Substitution	Medium	High	Red	Establish internal innovation incubator, invest in frontier tech scanning and VC
Policy Compliance Risk	High	Medium	Orange	Appoint compliance officer, hire legal advisors, participate in standard setting
Emerging Market Localization Failure	Medium	Medium	Orange	Joint venture model, hire local teams, conduct deep cultural research
Exchange Rate Fluctuation	Medium	Medium	Orange	Use financial instruments for exchange rate locking

3.3.2 Strategic Selection Matrix: Position Your Battlefield

Based on market scope and competitive advantages, enterprises can choose the following strategic positions:

- Cost Leadership Strategy (Broad Market):
 - 1. **Applicable to**: Large-scale production enterprises
 - 2. **Core Capabilities**: Automated production lines, lean management, bulk raw material procurement bargaining power
 - 3. **Investment Direction**: Continuously invest in energy-saving equipment and ERP/MES systems to improve operational efficiency
- Differentiation Focus Strategy (Niche Market):
 - 1. **Applicable to**: Medium and small innovative enterprises
 - 2. **Core Capabilities**: Unique technology patents, agile design services, deep customer insights
 - 3. **Investment Direction**: Invest in rapid prototyping technologies like 3D printing and market activities to build vertical field expert brand image
- Ecological Integration Strategy (Full Market):
 - 1. Applicable to: Industry leaders or large industrial capital
 - 2. Core Capabilities: Capital

strength, resource integration ability, platform building ability 3. **Investment Direction**: Fill product lines or technology gaps through M&A, invest in building circular economy closed loops (from recycling to regeneration), or establish industrial internet platforms connecting

upstream and downstream

Chapter 4: Future Investment Strategy Framework and Phased Implementation Path 4.1 Short-term Investment Focus Areas (2025-2027): Seize Track, Layout Core 4.1.1 Bio-based Material Production Equipment and Technology Patents: Build Green Barriers

- In-depth Analysis of Investment Logic: Policy-driven markets are "rigid" but have "time windows". Investment should focus on solving current core pain points of biobased materials: cost and performance.
- Specific Investment Targets and Return Forecasts:
 - 1. PLA High-efficiency Polymerization Catalyst Technology: Invest in R&D companies that can increase lactide conversion rate from 95% to over 99.5% with new catalysts. This can reduce PLA production costs by 10%-15%, with investment returns coming from technology licensing fees or future acquisition by chemical giants.
 - 2. "Next-generation Fermentation Technology" for PHA: Focus on startups that use synthetic biology to modify microbial strains to efficiently synthesize PHA from kitchen waste or industrial wastewater as "food". Such technology can disrupt PHA cost structures, with expected investment cycles of 5-7 years but hundred-fold return potential upon success.
 - 3. **Bio-based Material Dedicated Modification and Processing Equipment**: Invest in manufacturers of reactive extruders and nano-compound dispersion equipment that can solve PLA's insufficient toughness and poor heat resistance. Such equipment suppliers will grow steadily with material industry development.

4.1.2 Smart Packaging Solution Providers: Capturing Data Value

- Acquisition Target Screening Criteria:
 - Technical Uniqueness: Possess independent design capabilities for UHF RFID chips or technology to low-cost integrate sensors on packaging through printed electronics.
 - 2. **Data Monetization Ability**: Their smart packaging solutions can not only provide anti-counterfeiting traceability but also offer consumer behavior data for brands (e.g., opening location, frequency, associated purchases), forming data closed loops.
- Investment Case Simulation: Assume investing in Company A with core TTI label technology for temperature sensing, with label cost of 0.5 RMB/unit. In the high-end ice cream market, assuming annual demand of 100 million units and Company A capturing 30% market share, annual revenue would be 15 million RMB. Considering its technical barriers and 50% gross margin, Company A's valuation could reach 80-100 million RMB.

4.1.3 Regional Recycling Network Infrastructure: Card Positioning in Circular Economy Entry

- Business Model Innovation:
 - 1. "Recycling+" Model: Invest in building community recycling stations that integrate packaging recycling with household services and express delivery

- convenience services to increase traffic and user stickiness.
- 2. "IoT + Recycling": Invest in smart recycling bins where residents earn points for recycling, with data uploaded to cloud platforms in real-time to optimize collection routes and reduce operating costs.
- Policy Bonus Utilization: Such projects align with national "zero-waste city" construction. Actively applying for circular economy special funds and tax reductions at all levels of government can effectively reduce initial investment pressure. It is estimated that an intelligent recycling network covering a city of 5 million people requires initial investment of about 200-300 million RMB, with an investment recovery period of about 6-8 years.

4.2 Medium and Long-term Strategic Directions (2028-2030): Build Ecosystem, Define Future

4.2.1 Full Life Cycle Carbon Management System Development: From Compliance to Competitiveness

- System Architecture and Value:
 - 1. **Functional Modules**: Should include automatic carbon data collection, LCAs calculation engine, emission reduction path simulation and automatic report generation.
 - Customer Value: Help brands easily cope with EU CBAM and other regulatory requirements; reduce supply chain costs by optimizing carbon footprints; generated credible carbon footprint reports are powerful tools for green marketing.
- Profit Model: Adopt SaaS subscription model, charging annual fees ranging from 100,000 to several million RMB based on enterprise scale and number of products accounted for. The market space is huge, with all export-oriented enterprises and those with green ambitions being potential customers.

4.2.2 Cross-industry Collaborative Innovation Platform Construction: From Competition to Win-win

- Platform Operation Model:
 - 1. **Initiator**: Jointly initiated by industry leading enterprises or industrial capital.
 - 2. **Core Tasks**: 1) Establish standardized packaging specifications; 2) Jointly build reverse logistics and washing centers; 3) Jointly develop environmentally friendly new materials.
- Investment Value and Risk: Such platforms have network effects. Once established, they will become industry infrastructure with huge value. However, the risk lies in the difficulty of coordinating interests among all parties, requiring strong leading parties and clear benefit distribution mechanisms. It is recommended to invest in the form of limited partnership special funds.

4.2.3 Digital Supply Chain Finance Empowering SMEs: Activating Industrial Ecology

- **Technical Foundation**: Relies on blockchain technology to ensure authenticity and immutability of transaction data (e.g., accounts receivable, warehouse receipts).
- Operation Process:
 - 1. Packaging enterprises receive electronic orders and promised payments from brands.

- 2. This order information generates digital creditor's rights vouchers on blockchain.
- 3. Packaging enterprises can split and transfer these vouchers to upstream raw material suppliers, or apply for financing from financial institutions cooperating with the platform.
- 4. Financial institutions quickly grant loans based on credit of core enterprises (brands).
- **Investment Opportunity**: Invest in tech companies developing such blockchain supply chain finance platforms or their issued ABS asset-backed securities.

4.3 Risk Hedging and Dynamic Adjustment Mechanism: Building Anti-fragile Organizations

4.3.1 Multi-technology Route Parallel R&D: Option Thinking

- Application Example: In biodegradable materials field, simultaneously layout:
 - 1. **PLA (Mature Market)**: As cash cow business, ensuring short-term returns.
 - 2. **PHA (Growth Market)**: As strategic business, with medium-scale investment and pilot projects.
 - 3. **Cellulose-based Materials (Frontier Exploration)**: As venture business, with small funds invested in university labs or early-stage startups.
- Management Mechanism: Establish internal technology review committee to regularly evaluate various technology routes and dynamically adjust resource allocation based on technology maturity and market changes.

4.3.2 Gradient Entry Strategy for Policy-sensitive Markets: Crossing River by Feeling Stones

- Stage 1: Trade Probe (1-2 years): Export products through local agents to test market acceptance and understand policy environment.
- Stage 2: Light-asset Operation (2-4 years): Establish joint ventures with local enterprises, build small-scale assembly lines or distribution centers to reduce policy risks.
- Stage 3: Heavy-asset Investment (After 4 years): After policy stability and market effectiveness are proven, establish wholly-owned factories for localized deep operation.

4.3.3 Long-term Value of Rating Improvement on Capital Attraction: ESG is Financing

- Action Path:
 - 1. **Benchmarking Ratings**: Select MSCI or Sustainalytics ESG rating systems for gap analysis.
 - 2. **Key Breakthroughs**: Set improvement targets and public commitments for high-weight issues (e.g., sustainable raw material procurement, product carbon footprint, circular economy).
 - 3. **Proactive Disclosure**: Publish third-party verified ESG reports annually and actively communicate with rating agencies.
- Capital Value: Enterprises with high ESG ratings can obtain 20-50 basis points interest rate discounts when applying for bank green loans, and can enter investment white lists of top global sovereign funds and pension funds.

Chapter 5: Special Analysis on Development Status of China's Food Packaging Design

Industry

5.1 Industry Scale and Growth Drivers: From "Accessory" to "Core"

- Market Scale and Structure Refinement:
 - 1. **Overall Scale**: Growing from 287.6 billion RMB in 2025 to 419.8 billion RMB in 2030, with CAGR of 7.9%. Driven by the explicit value of design, with excellent packaging design bringing 10%-30% premium to products.
 - 2. **Functional Packaging (35%)**: Its high proportion means brands are willing to pay for design that "solves problems". e.g., self-heating packaging design involves not only structure but also chemical reaction control and user safety, being interdisciplinary complex design.
 - 3. Smart Packaging Application Rate (18%): Though not mainstream, growth curve is steep. Applications have penetrated from high-end liquor and health products to regional specialty agricultural products for telling "origin stories".

Core Driving Force Deep Insights:

- 1. "Emotional Appeal" of Consumption Upgrade:
 - o **Social Currency**: Packaging becomes a symbol of personal taste. e.g., the oriental crystal stone-shaped bottle of Guanxia perfume is itself a decoration, driving users to share on social media.
 - Emotional Resonance: "National trend" packaging is not simple element stacking but establishes cultural identity and emotional connection with young consumers through modern expression of traditional colors, patterns and culture.
- 2. "Forced Innovation" by Policy Standards: "Requirements for Restricting Excessive Packaging of Goods" mandatorily requires packaging void ratio, layers and costs to comply. This instead breeds "simple but not simple" design philosophy, pushing designers to create value in material texture, structural ingenuity and craft details, replacing past luxury stacking.

5.2 Industry Chain Structure: Value Reshaping and Power Transfer

- Upstream: Rise of Design-driven Raw Materials:
 - 1. Traditional B2B material suppliers begin establishing designer relations departments, proactively promoting new eco-materials, specialty papers and tactile in-mold label films to design companies for joint innovation.
- Midstream: Business Model Evolution of Design Companies:
 - 1. **Head Design Institutions**: e.g., Panhu Packaging Design Lab, whose business model has upgraded from "project-based" fees to "design investment" model, reducing upfront design fees in exchange for sales share after product launch, deeply binding with clients.
 - 2. **Small and Medium Design Studios**: Survival depends on stylized labels, some specializing in "new Chinese style", others in "anime kawaii style", acquiring customers by establishing reputation in specific circles.
 - 3. **Tech-enabled New Entrants**: Emergence of companies using Al generative design platforms, inputting brand tone and product keywords, Al can generate hundreds of packaging drafts for designer optimization, increasing efficiency several-fold.

Downstream: Precise Mapping of Food Industry Segmented Needs on Design:

- 1. **Leisure Food**: Pursues "series sense" and "shelf impact". Design needs to consider standing out from competitors on supermarket shelves while maintaining unified visual language for series products.
- 2. **Healthy Food**: Design language emphasizes "purity" and "nature", mostly using whitespace, low-saturation colors and original texture of eco-materials.
- 3. **Regional Specialties**: Packaging design is the "translator of local culture", needing to translate profound regional cultural elements into modern, international visual language, retaining cultural core while conforming to contemporary aesthetics.

5.3 Technology Application Status: Integration and Conflict Between Tradition and Digital

Persistence and Innovation of Traditional Crafts:

- 1. Hot stamping, embossing and other crafts are not eliminated but evolving toward more refined micro-stamping and multi-process combinations to create unique tactile experiences.
- 2. Challenges of eco-inks: Water-based inks still lag behind solvent-based inks in color saturation and drying speed, requiring designers to consider production feasibility during creative stages.

Comprehensive Penetration of Intelligent and Digital Design Tools:

- 1. **Digital Twins (Adoption Rate 17.6%)**: During design phase, software simulates packaging's vibration, pressure and drop during transportation, identifying structural defects in advance to avoid losses after mass production. This is a "front-loaded risk management" tool.
- 2. **Virtual Reality Review**: Brands and designers can wear VR glasses to examine packaging effects on 1:1 virtual shelves, greatly reducing physical sampling times and costs.
- 3. **Al-assisted Design**: In addition to generating schemes, Al can also perform color trend analysis and competitor packaging analysis, providing data-supported decision references for designers.

• Promotion of Environmental Technologies and Consumer Cognition Dislocation:

- 1. **Biodegradable Materials (Application Ratio 28.6%)**: The biggest challenge is consumer education. Many consumers misinterpret "biodegradable" as "can be discarded at will", while in fact most biodegradable materials require industrial composting conditions to decompose. This requires clear disposal guide icons and text on packaging.
- 2. **Lightweighting Design**: Has evolved from simple "weight reduction" to "structural lightweighting". e.g., optimizing bottle structure to reduce bottle mouth size or wall thickness without reducing capacity and strength.

Chapter 6: Industry Competition Pattern and Market Opportunity Deep Mining 6.1 Competitive Analysis of Main Enterprises: Contention of Heroes, Pattern Evolution 6.1.1 Leading Enterprises: Multi-dimensional Layout and Moat Construction

- Market Share and Business Matrix (2024 Data):
 - 1. CR5 (Top 5 Enterprises Market Share) Rises to 39.7%, with continuously

- improving industry concentration, marking the transition from scattered competition to oligopolistic competition.
- 2. **Aoruijin Technology**: Core advantage lies in "integrated service" and "symbiotic layout". In addition to "follow-up factory building" service for Red Bull, it successfully entered the two-piece can market by acquiring Ball Asia Pacific, achieving full-category coverage of metal packaging. Its new strategy is transforming to "comprehensive solution provider", offering one-stop services from packaging design, R&D, manufacturing to filling and logistics support, greatly enhancing customer stickiness.
- 3. **Yutong Technology**: Positioned as high-end brand packaging, it rose early relying on consumer electronics packaging, now vigorously expanding ecopackaging (paper pulp molding lunch boxes have been scaled for Starbucks, McDonald's) and cosmetics packaging. Its core competitiveness lies in cross-industry technology migration ability and strict quality management system, applying precision and beauty of consumer electronics packaging to other fields. Its R&D investment continues to exceed 4% of revenue, with rich patent reserves in biodegradable materials and smart packaging.
- 4. **Tetra Pak**: Its business model is exemplary, with "equipment + packaging" bundled sales model, locking customers' packaging purchases long-term by providing cost-effective filling equipment. Its core moat is intellectual property barriers built by over 8,000 technology patents. In recent years, Tetra Pak has actively responded to environmental challenges, launching Tetra Pak Peak® aseptic packaging with over 80% cardboard content and biomass plastic caps and sugarcane-based polyethylene, demonstrating strong technology iteration ability.

6.1.2 SMEs: "Hidden Champion" Strategy for Differentiated Survival

- Typical Success Paths:
 - 1. **Technology Deep Cultivation Type**: e.g., Shanghai Pulisheng (now Runze Technology), focusing on R&D and production of high-speed aseptic carton filling machines, achieving domestic leadership in segmented equipment fields, replacing imports and avoiding head-on competition with giants.
 - 2. **Vertical Field Type**: e.g., Zhejiang Pando Environmental Protection, specializing in disposable paper cups, paper bowls and other food containers, becoming core suppliers for many catering chain brands through scaled production and cost control.
 - 3. **Design-driven Type**: e.g., Shenzhen Baixinglong, with creative design as core, providing full-case services from strategy to design for liquor, tea, food and other brands, empowering products with design to create high added value.
- **Survival Law**: SMEs generally adopt "three highs and one small" strategy high technology content, high design added value, high customer response speed, targeting small niche markets.

6.1.3 Foreign Brands' Dynamics in China: Localization and High-end

 Amcor: Its strategy in China emphasizes "global wisdom, local execution". On one hand, it introduces globally leading recyclable high-barrier flexible packaging technology to China; on the other hand, it actively acquires local enterprises (e.g., acquiring Jiangsu Shenda Flexible Packaging) to quickly obtain production capacity and customer resources. Its goal is to deeply participate in China's circular economy transformation.

• Stora Enso: As a renewable materials company, its strategy is to provide high-end pulp and specialty paper for the Chinese market based on its sustainable forestry resources in Northern Europe. It emphasizes its products' "traceability" and "carbon footprint advantages", mainly targeting export brands with hard environmental requirements and high-end local brands.

6.2 Submarket Potential: Star Ocean of Future Growth

6.2.1 Functional Packaging: From "Protection" to "Empowerment"

- Antibacterial Packaging:
 - 1. **Technical Routes**: 1) Silver/zinc ion antibacterial: mature technology, widely used in refrigerator inner walls and food packaging inner films. 2) Natural plant extract antibacterial (e.g., chitosan, rosemary extract): more in line with "clean label" trend, being future R&D focus.
 - 2. **Market Prospects**: Urgently needed in fresh meat, poultry, baked food and ready-to-eat salad packaging, with expected annual growth rate of 20% in next five years.
- Modified Atmosphere Preservation Packaging:
 - 1. **Technical Core**: Lies in precise mastery of "optimal gas ratios" for different foods. e.g., red meat needs high oxygen (70-80% O_2) to maintain bright red color, while white meat and fish need oxygen-free environments (high CO_2 and N_2).
 - 2. **Investment Opportunity**: Invest in enterprises that can provide integrated solutions of "precise gas ratio control + high-barrier film materials", which have high technical barriers.

6.2.2 Personalized Customization Design Market: Rise of C2B Model

• **Driving Forces**: Gen Z and Alpha generation consumers pursue individual expression and reject "wearing the same clothes", including packaging. Social media enables niche designs to quickly find their audiences.

Business Models:

- 1. **B2B Small-batch Customization**: Serve new consumer brands, providing rapid design and production services for different product lines and marketing activities (e.g., holiday limited editions, IP co-branding).
- 2. **C2B User Co-creation**: Platforms provide online design tools where consumers can upload pictures and text to customize packaging patterns, creating unique products. This has huge potential in gift and wedding markets.
- Market Space: It is expected that by 2030, the proportion of personalized customized packaging in the design market will increase from the current about 5% to 15%.

6.2.3 Emerging Channel Supporting Packaging: Reconstructing People, Goods, and Scenes

Live Streaming E-commerce Packaging:

- 1. **Design Demands**: "Unboxing ritual sense". Creates surprise experiences through multi-layer structures, hidden Easter eggs, free small gifts, etc., encouraging users to record and share unboxing videos for secondary spread.
- 2. **Functional Demands**: Must be extremely sturdy to withstand relatively rough express transportation, ensuring intact arrival at consumers.

Fresh Community Group Buying Packaging:

- 1. **Characteristics**: Usually large-size, no retail decoration "blank" packaging, extremely cost-sensitive.
- 2. **Innovation Points**: Lie in logistics optimization, such as designing thermal bags suitable for electric vehicle delivery or foldable reusable fresh turnover boxes.

6.3 Policy and Standard Impact: Rule Makers

6.3.1 Food Safety Regulation Upgrade's Constraints and Guidance on Design

- **Regulation Impact**: GB 4806 series standards put forward strict requirements for total migration and specific migration limits of food contact materials and products.
- Design Response: When selecting inks, adhesives, coatings and composite materials, designers must take compliance as the primary prerequisite. This promotes closer integration of design with materials science, making "safety-by-design" an industry consensus.

6.3.2 Advancement and Business Opportunities of Mandatory Green Packaging Standards

• **Standard System**: National standards such as "Green Packaging Evaluation Methods and Criteria" and "Requirements for Restricting Excessive Packaging of Goods" constitute China's green packaging regulatory framework.

Design Orientation:

- 1. **Lightweighting**: Reduce material use at source through structural optimization.
- 2. **Recyclability**: Prioritize mono-material design, avoiding multi-material composites that are difficult to separate.
- 3. **Use of Recycled Materials**: Encourage use of post-consumer recycled plastics while ensuring safety.
- Business Opportunities: Designs meeting green standards can not only avoid policy
 risks but also gain favor in government green procurement and enhance brand image
 among consumers with strong environmental awareness.

6.3.3 Tax Incentives and Subsidy Policy Orientation

Policy List:

- 1. The state grants corporate income tax "three exemptions and three 50% reductions" for enterprises engaged in environmental protection projects (e.g., waste plastic recycling).
- 2. Local finance gives one-time rewards to enterprises obtaining "Green Design Product" titles.
- 3. Enterprises purchasing and using comprehensive utilization products and technologies enjoy VAT immediate levy and refund policies according to regulations.

• Strategic Suggestion: Enterprises should set up dedicated positions to research and apply for various green subsidies and tax incentives, which will directly improve project profitability.

Chapter 7: Investment Strategy and Risk Warning System Construction

7.1 Technical Investment Direction Suggestions: Do Something, Don't Do Something

7.1.1 Smart Packaging: Focus on Achievable and Scalable Technologies

- RFID/UHF Tags: Investment focus should be on chip design and antenna printing
 processes, aiming to reduce unit cost to below 0.1 RMB. Once breakthrough is
 achieved, explosive growth will occur in high-end liquor, health products, cosmetics
 and other fields.
- Temperature-sensitive Labels: What the market needs are low-cost, high-reliability solutions. Invest in printed TTI labels based on microcapsule technology, with controllable cost of 0.3-0.5 RMB, being the most commercially viable direction at present.
- **Investment Return Forecast**: A project focusing on precision printing technology for UHF RFID antennas requires initial equipment investment of about 20 million RMB, with annual output value of 50 million RMB after reaching production capacity, gross margin of about 40%, and investment recovery period of about 4-5 years.

7.1.2 Bio-based Material Industrialization: Aiming at Next-generation Solutions

- **Investment Logic**: PLA is the present, PHA is the future. Focus should be on enterprises that have made breakthroughs in PHA production cost control.
- Key Technology Nodes:
 - 1. **High-yield Strain Development**: Use synthetic biology to modify strains to improve PHA synthesis efficiency.
 - 2. **High-efficiency Extraction Process**: Develop low-energy, low-solvent PHA extraction technology to reduce post-processing costs.
 - 3. **Non-grain Substrate Utilization**: Use straw, kitchen waste, etc. as fermentation substrates to solve the "food competition" problem and reduce costs.
- **Risk Warning**: Biotechnology R&D has long cycles and high uncertainty. It is recommended to conduct portfolio investment in VC form to diversify risks.

7.1.3 Automated Production Equipment Upgrade: Clear Efficiency Dividend

- Upgrade Path:
 - 1. **Single Machine Automation**: Prioritize introducing Al visual inspection equipment with the shortest investment return cycle.
 - 2. **Production Line Automation**: Introduce collaborative robots in loading/unloading, packaging, palletizing and other links.
 - 3. **Lights-out Factory**: The ultimate goal is to build fully automated, unmanned smart factories.
- **Investment Suggestion**: For SMEs, it is recommended to start from step 1, using definite ROI data to support subsequent investment decisions. Priority can be given to investing in cloud-based MES systems to first achieve production data transparency, laying the foundation for subsequent automation.

7.2 Risk Factor Identification and Quantitative Management

7.2.1 Raw Material Price Fluctuation Risk (Cost Proportion 62.8%)

- Risk Management Tools:
 - 1. **Futures Hedging**: Applicable to raw materials with futures varieties like PTA (PET raw material), PP, PE.
 - 2. **Strategic Reserve**: Sign long-term agreements with upstream suppliers and build safety inventory when prices are low.
 - 3. **Price Linkage Clause**: Agree in downstream sales contracts that when main raw material price fluctuations exceed ±10%, product prices adjust accordingly.
- **Quantitative Model**: Establish raw material price early warning system, setting procurement "red, yellow, green" zones to guide purchasing decisions.

7.2.2 Technology Substitution and Patent Barriers

• **Technology Scanning**: Establish dedicated teams to continuously track cutting-edge tech developments like edible packaging, waterless packaging, molecular-level preservation.

Patent Strategy:

- 1. **Defense**: Apply "patent thickets" around core technologies to form protection nets.
- 2. **Offense**: Actively participate in industry standard setting to integrate proprietary patents into standards.
- 3. **Cooperation**: Cooperate with universities and research institutes to obtain early technology licensing.

7.2.3 Policy Compliance Risk

- **Dynamic Monitoring**: Subscribe to professional regulatory databases and services to ensure first-time access to global policy changes.
- **Compliance Audit**: Conduct comprehensive compliance internal audit annually to identify and rectify problems in advance.
- **Contingency Plan**: For major policy changes like "stricter plastic bans", develop detailed "product switching emergency plans" including alternative material sourcing, equipment modification, customer communication and other complete processes.

7.3 Strategic Layout Planning: Think Thoroughly Before Acting

7.3.1 Regional Market Expansion Priority Assessment

- **First-tier (Core Deep Cultivation)**: Yangtze River Delta and Pearl River Delta. These regions have strong industrial foundations and concentration of high-end food brands, with the strongest demand for smart and green packaging. Strategy is deep service, thorough penetration.
- **Second-tier (Active Development)**: Chengdu-Chongqing economic circle and middle Yangtze River urban agglomeration. These are inland consumption centers with great market potential and unsettled competition patterns. Strategy is to establish regional sales and service centers for rapid response.
- Third-tier (Strategic Layout): Southeast Asia. Follow Chinese food brands going global, with "light asset" first strategy, entering markets through technology licensing or joint venture factory building.

7.3.2 Upstream and Downstream Integration Strategy

Vertical Integration Model:

- 1. **Backward Integration**: Acquire or strategically invest in recycled plastic (rPET/rPP) production enterprises to ensure stable supply of eco-friendly raw materials.
- 2. **Forward Integration**: Acquire packaging design companies or smart label solution providers to enhance overall service value.
- **Horizontal Integration Model**: Acquire competitors in same industry to quickly gain market share and capacity. Against the backdrop of current industry concentration improvement, this is an important means for leading enterprises to rapidly expand.
- **Cooperation Model**: Build circulating packaging pools with logistics companies, establish joint R&D labs with food brands.

7.3.3 Establishment of Long-term ESG Investment Framework

Environmental:

- 1. **Goals**: Set science-based carbon reduction targets (SBTi), commit to achieving 100% recyclable, biodegradable or reusable packaging by 2030.
- 2. **Actions**: Invest in carbon capture technology, renewable energy.

Social:

- 1. **Supply Chain Responsibility**: Conduct ESG audits on suppliers to ensure compliance with labor, human rights and environmental standards.
- 2. **Product Responsibility**: Integrate barrier-free design concepts in design phase, caring for elderly and disabled groups.

Governance:

- 1. **Board Diversity**: Increase proportion of female directors and independent directors.
- 2. **Anti-corruption**: Establish complete internal reporting and audit systems.
- Capital Value: Solid ESG framework can not only reduce financing costs but also attract "patient capital", helping enterprises weather economic cycles and achieve sustainable development.

Conclusions and Outlook

This report ultimately depicts the ultimate picture of the food packaging industry in 2030: it will be an ecosystem of "intelligent resource management, networked value distribution, and positive environmental impact". The future leading enterprises must be those that can internalize sustainable development as their gene, arm themselves with digital intelligence, and build industrial communities with open and collaborative attitudes. The depth and breadth of this transformation will far exceed the sum of the past fifty years. Now is the critical moment to reshape rules and define the future.