Collaborative Analysis Report on the Future Food Packaging Industry (2026-2035)

Abstract

The global food packaging industry stands at a historic crossroads. Over the next decade (2026-2035), the industry will undergo a profound transformation driven by the wave of sustainable development, disruptive technological innovation, and increasingly stringent global regulations. This report aims to provide senior corporate decision-makers with a panoramic view of the future industrial landscape, conduct an in-depth analysis of the challenges and opportunities therein, and elaborate on the strategic value of "industrial collaboration" as a core competitive advantage.

Key Findings:

1. Robust Market Growth with Profound Structural Reshaping:

The global food packaging market is expected to maintain stable growth, with a Compound Annual Growth Rate (CAGR) of approximately 5-5.6% [2][14]. However, the core drivers of growth are shifting from traditional, cost-oriented packaging solutions towards high-value-added packaging driven by sustainability, intelligence, and convenience. By 2030, the demand for innovative and sustainable packaging is expected to be on par with traditional fossil-based plastic packaging [21][23].

2. Divergent Regional Patterns, Strong Asia-Pacific Engine:

The Asia-Pacific region, leveraging its vast population base and economic dynamism, will continue to be the largest growth engine for the global food packaging market, accounting for nearly half of the global market share [3][7][308]. Meanwhile, although growth rates are slowing in European and North American markets, they play the role of global "trendsetters" in regulation formulation, technological innovation, and consumer awareness, profoundly influencing the standards and direction of global supply chains.

3. Technological Innovation as a Primary Driver:

Two main technological threads are reshaping the industry: **First, the materials revolution**, where sustainable materials such as fiber-based packaging, bio-based/biodegradable plastics, and mono-material designs are accelerating the replacement of traditional multi-layer composite materials [22][24][51]. **Second, intelligence and digitalization**, where the combination of active packaging, smart packaging (integrating sensors, RFID, NFC, etc.) with IoT and blockchain technology is transforming packaging from a passive container into an active data node and a medium for brand communication, enabling end-to-end transparent supply chain management [41][46][53].

4. Regulations Becoming a "Hard Threshold" for Market Access:

A global regulatory tsunami, represented by the EU's latest Packaging and Packaging Waste Regulation (PPWR), is reshaping market rules with unprecedented force [102][162][222]. Regulations impose mandatory requirements on packaging recyclability, recycled material content, the ban of specific substances (like PFAS), and information transparency, making "compliance" no longer optional but a basic

prerequisite for corporate survival and development.

5. Industrial Collaboration is Key to Winning the Future:

Facing multiple complex challenges from technology, markets, and regulations, no single enterprise can cope alone. Building industrial collaboration networks spanning material suppliers, packaging manufacturers, brand owners, technology companies, retailers, and even recycling systems has become the only way to share risks, reduce costs, accelerate innovation, and build compliant and resilient supply chains. Future competition will no longer be between individual enterprises, but between ecosystems and ecosystems.

Core Strategic Recommendations:

This report strongly recommends that senior corporate executives take immediate action: At the strategic level, integrate "circular-ready" and "digital-enabled" into the corporate core vision; At the R&D level, focus investment on next-generation sustainable materials and smart packaging technologies; At the supply chain level, proactively restructure to meet the compliance requirements of global regulations; At the organizational level, break down departmental silos, actively seek external strategic partnerships, and cultivate a "collaborative gene." Only in this way can enterprises seize the initiative and remain invincible in this magnificent industrial transformation.

Chapter 1: Macro-Environment Analysis of the Global Food Packaging Market

1.1 Market Size and Growth Forecast

The global food packaging market is a vast and dynamic field. Its development not only reflects the pulse of the global food industry but is also closely linked to consumer lifestyles, technological progress, and macroeconomic trends.

2023-2025 Market Status: A Robust Foundation

According to comprehensive analysis by multiple market research institutions, the global packaging market reached the trillion-dollar level between 2023 and 2024. Smithers' report predicts the global packaging market value will reach USD 1.05 trillion in 2024 [312], while another report estimates it at USD 1.17 trillion [303]. Food packaging, as the largest segment, holds a pivotal position. Although statistical calibers vary among institutions (e.g., whether it includes only primary packaging or all packaging levels; whether it refers only to packaging materials or includes packaging machinery), the overall trend is clear: the market base is huge and maintains a stable growth trajectory.

During the 2023-2025 period, market growth was primarily driven by the following factors:

Consumption Upgrading in Emerging Markets:

Especially in Asia and Latin America, urbanization and increases in per capita disposable income have driven strong demand for packaged food (particularly convenience foods and ready-to-eat meals).

Persistent Focus on Food Safety and Shelf Life:

Continuously rising standards for food safety from consumers and regulators have spurred demand for high-barrier, aseptic, and fresh-keeping packaging technologies.

Booming E-commerce and Takeaway Industries:

The proliferation of online retail and food delivery services has created new demand for specific packaging solutions adapted to logistics needs, ensuring food integrity and temperature.

2026-2035 Growth Forecast: A New Chapter Driven by Value

Looking ahead to the next decade, the global food packaging market will enter a new growth phase. Multiple institutions predict that the market's CAGR will remain stable between 5% and 5.6% before 2030 [2][8][14]. For example, Allied Market Research predicts the market size will reach USD 340.72 billion by 2030 (this data might refer to a specific segment, differing in caliber from the trillion-dollar total market estimated by others), with a CAGR of 5.2% [2], while Fortune Business Insights gives a similar growth rate prediction [8][11].

It is noteworthy that growth in the next decade will exhibit distinctly different characteristics:

From "Volume Growth" to "Value Growth":

Growth will increasingly come from increases in packaging unit price, rather than 单纯的 increases in packaging consumption volume. This value enhancement mainly stems from the switch to sustainable materials (often higher cost), the integration of smart functions, and more complex designs.

Sustainability Becomes a Core Growth Engine:

By 2030, sustainable packaging is expected to account for 32% of the global packaging market [33]. Consumer preference for eco-friendliness (over 60% of consumers are willing to pay more for eco-friendly packaging [23][35]) and stringent regulations will jointly drive this shift.

High Growth in Technology-Driven Segments:

The active and intelligent packaging market is expected to grow at a CAGR exceeding 5.5% [30], while more forward-looking areas like edible packaging may see a CAGR as high as 6.79% [15], although its current market base is small.

It is foreseeable that from 2026 to 2035, enterprises that can successfully navigate the two major trends of sustainability and intelligence will be able to share the largest dividends of market growth. Enterprises clinging to traditional, low-cost models will face the dual risks of squeezed profit margins and shrinking market share.

1.2 Major Regional Market Patterns and Dynamics

The global food packaging market exhibits distinct regional characteristics. Significant differences exist between regions in terms of market size, growth rate, driving factors, and regulatory environment. Understanding these differences is crucial for formulating global strategies.

Asia-Pacific Region (APAC): The Engine of Global Growth Market Position:

The Asia-Pacific region is the world's largest and fastest-growing food packaging market, accounting for nearly half of the global total share. Multiple data sources indicate that the Asia-Pacific region dominates both the global packaging market [3][123] and the food packaging technology market [3], with a share of about 40% to 50% [308].

Driving Factors:

1. Macroeconomics and Demographic Dividend:

The large population bases of China, India, and Southeast Asian countries, rapid urbanization, and a growing middle class are the core drivers of demand for convenient, safe, and diverse packaged foods.

2. Lifestyle Changes:

Fast-paced modern life has increased demand for ready-to-eat foods, small-packaged snacks, and takeaway services, directly stimulating the related packaging

market.

3. Retail Modernization:

The transition from traditional wet markets to modern supermarkets and online retail has increased demand for standardized, branded packaging.

Challenges and Opportunities:

The challenge for the Asia-Pacific region lies in its immense internal diversity. The regulatory systems, levels of economic development, and recycling infrastructure development vary greatly among countries. This presents complex compliance challenges for enterprises but also creates opportunities for those able to provide localized, cost-effective solutions.

Europe: The Regulation-Driven Circular Economy Pioneer

Market Position: Europe is the world's second-largest market, accounting for about 26% of the global packaging market share [302]. It is a mature, highly regulated, and innovation-driven market.

Core Driver:

Regulation is the strongest force shaping the European market. The European Commission's "European Green Deal" and its subordinate Packaging and Packaging Waste Regulation (PPWR) [102][162][222] set ambitious and legally binding targets for the entire value chain, including reducing packaging waste, mandatory use of recycled materials, banning specific hazardous substances, etc.

Market Characteristics:

1. Strong Sustainability Awareness:

European consumers are highly sensitive to the environmental impact of packaging and have high expectations for brands' environmental commitments. Over 60% of EU consumers consider paper packaging more sustainable than plastic [22].

2. Practice of Circular Economy:

Concepts and practices such as "Design for Recycling," Extended Producer Responsibility (EPR) systems, and Deposit Return Systems (DRS) are widely applied and deepened in Europe.

3. High Ground for Technological Innovation:

Europe is a world leader in areas such as chemical recycling, bio-based materials, and food contact material safety research.

North America: The Leader in Technology and Consumer Trends

Market Position: North America is a mature market comparable in size to Europe, accounting for about 24% of the global packaging market [302]. This market is known for its strong consumer purchasing power, developed retail networks, and rapid adoption of technological innovations.

Driving Factors:

1. Consumer Preferences:

North American consumers place high value on convenience, health, and personalized experiences. This drives the development of microwaveable packaging, easy-open/reclose packaging, and smart packaging that provides nutritional information and traceability functions.

2. Brand Competition:

In a highly competitive retail environment, packaging becomes an important tool for

brand differentiation and attracting consumers.

3. State-Level Legislation Driving Change:

Although federal regulations are relatively relaxed, state-level legislation in key states like California and New York (e.g., California's SB 54 bill [29]) plays an increasingly important role in promoting EPR, restricting PFAS, and setting recycling targets.

Market Characteristics:

Lightweighting, e-commerce suitability, and verification of sustainability claims are major trends in the North American market. The challenge for enterprises is how to meet diverse consumer demands while coping with an increasingly fragmented state-level regulatory environment.

Latin America and Other Regions: Emerging Forces with Great Potential Market Position:

Latin America, the Middle East, and Africa are emerging markets full of growth potential. Although their total share is currently relatively small, their growth rates are remarkable.

Driving Factors:

Stable economic development, young population structures, and increasing acceptance of international food brands collectively drive the growth of packaged food consumption.

Challenges:

Inadequate infrastructure (especially recycling systems), political and economic instability, and limitations in consumer purchasing power are the main constraints on the development of these markets. However, this also provides a unique market entry point for enterprises offering low-cost, adaptable sustainable packaging solutions.

1.3 Analysis of Key Driving Factors

In summary, the transformation of the global food packaging industry over the next decade will be driven by the following four macro forces:

1. Fundamental Shifts in Consumer Behavior:

The new generation of consumers are not just passive recipients of products but active expressers of values. Their integrated demands for **health** (pursuing natural, organic, less additive foods, requiring clear display of ingredients and origin), **convenience** (adapting to fast-paced lives, needing packaging that is easy to carry, open, cook, and store), and **sustainability** (preferring eco-friendly materials, concerned about brand environmental responsibility, even willing to pay a premium [21][35]) are driving innovation across the entire industry chain from the demand side.

2. Convergence and Diffusion of Disruptive Technologies:

Breakthroughs in **materials science** (e.g., high-performance bioplastics, nanocoatings), advances in **information technology** (e.g., IoT sensors, low-cost RFID), and the application of **data science** (e.g., blockchain, artificial intelligence) are creating a chemical reaction. These technologies are making packaging "smarter" and "greener," and supply chains more "transparent." Technology is no longer a nice-to-have element but the cornerstone for building future core competitiveness [41][43][53].

3. Structural Tightening of the Global Regulatory Environment:

From Europe's PPWR to EPR bills in North American states, to plastic reduction targets in Asia-Pacific countries, a global "environmental regulation storm" is forming

[21][102][162]. These regulations are no longer advisory guidelines but legally enforceable laws. They are forcefully reshaping corporate design, production, sales, and recycling behaviors by setting clear bans, targets, and penalties, internalizing environmental costs.

4. Globalization and Complexity of Supply Chains:

As global trade deepens, food supply chains are being stretched longer, with increasingly numerous links. This significantly increases the difficulty and importance of **food safety traceability**. Simultaneously, tests on supply chain resilience from unexpected events (e.g., pandemics, geopolitical conflicts) are becoming more frequent. Therefore, the demand for packaging solutions (like smart packaging) that can enhance supply chain efficiency, transparency, and risk resistance has become extremely urgent.

These four driving forces are intertwined and reinforce each other, collectively constituting the grand background of the future food packaging industry transformation. Enterprises must deeply understand and proactively respond to these forces to grasp the initiative in future competition.

Chapter 2: Core Technological Innovations and Industrial Transformation in the Next Decade

Technological innovation is the core engine leading the food packaging industry into the future. Over the next decade, transformation will primarily revolve around the two main axes of "sustainability" and "intelligence." These technologies will not only change packaging itself but will also reshape the operational methods of the entire value chain through industrial collaboration.

2.1 The Sustainable Packaging Materials Revolution

Dependence on traditional fossil-based plastics is facing unprecedented challenges, making material innovation the first battlefield for industry transformation.

2.1.1 Fiber-Based Packaging: The Revival and Transcendence of Paper Trends and Market:

Paper and paperboard, as eco-friendly materials derived from renewable resources and widely accepted by consumers, are experiencing a "renaissance." The global fiber-based packaging market size is expected to reach USD 500 billion by 2030 [22]. Brands are actively seeking to replace plastic bottles, bags, and food trays with paper packaging.

Technological Innovation:

The limitation of traditional paper packaging lies in its poor barrier properties (waterproof, oil-proof, oxygen barrier). Current innovation focuses on:

1. Functional Coatings:

Developing water-based, bio-based, or biodegradable coatings to replace traditional polyethylene (PE) lamination, thereby imparting excellent barrier properties to paper without affecting recyclability.

2. Structural Design Innovation:

Using molded pulp technology to manufacture 3D paper structures that can replace complex-shaped plastic trays and cup lids.

3. High-Performance Paper:

Researching and developing higher strength, lighter weight paperboard materials to

meet logistics and protection needs while reducing material usage.

Industrial Collaboration Point:

This revolution requires close cooperation among **forestry companies** (providing sustainably certified wood pulp), **paper mills** (developing high-performance paper substrates), **chemical companies** (developing eco-friendly coating technologies), **equipment manufacturers** (providing new forming and filling equipment), and **brand owners** to jointly solve technical challenges and cost issues.

2.1.2 Bio-Based and Biodegradable Plastics: Exploring Green Alternatives

Concepts and Types: Bio-based Plastics refer to plastics derived wholly or partially from renewable biomass (e.g., corn, sugarcane), such as bio-based PET, bio-based PE. Biodegradable Plastics refer to plastics that can be decomposed by microorganisms under specific conditions (e.g., industrial composting), such as Polylactic Acid (PLA), Polyhydroxyalkanoates (PHA), etc. [26][32][35].

Market Prospects and Challenges:

Bioplastics are highly anticipated, with predictions that their market share will grow from less than 1% in 2017 to 40% by 2030 [24]. However, their development faces three major challenges:

- 1. **Cost and Scale:** Current production costs remain significantly higher than traditional plastics, and capacity is limited [32].
- 2. **Performance Limitations:** Some bioplastics still fall short of traditional plastics in terms of heat resistance and barrier properties.

3. End-of-Life Treatment Dilemma:

Biodegradable plastics require specific industrial composting conditions; if mixed into traditional plastic recycling streams, they cause contamination. Therefore, their large-scale application depends on the establishment of independent collection and treatment systems.

Industrial Collaboration Point:

Promoting the development of bioplastics requires building a new, closed-loop ecosystem involving agriculture (providing stable, cheap biomass raw materials), biotechnology companies (developing efficient strains and fermentation processes), chemical companies (conducting polymerization and modification), packaging manufacturers, and municipal waste management departments and certification bodies.

2.1.3 Edible Packaging: The Ultimate Sustainable Vision

Concept and Application:

Edible packaging involves processing food materials (e.g., proteins, polysaccharides, lipids) into films or coatings used to package other foods, ultimately consumable along with the food. This is considered the ultimate solution to the packaging waste problem [15][32][46]. Current application scenarios are mostly seen in inner packaging for candies, ice cream, or as fresh-keeping coatings for fruits and vegetables.

Market Potential:

As an emerging niche market, edible packaging has huge growth potential, with an expected CAGR of 6.79% [15]. Its application scope is expected to expand with advances in material science and increased consumer acceptance.

Industrial Collaboration Point:

This is a typical cross-border innovation field requiring close collaboration among food

scientists, materials engineers, and food processing enterprises to ensure packaging functionality (protection, barrier) while meeting food safety, regulations, taste, and cost requirements.

2.1.4 Mono-Materials and Easy-to-Recycle Design: Simplifying Recycling from the Source

Trends and Philosophy:

Traditional food packaging extensively uses multi-layer composite materials (e.g., paper-aluminum-plastic composites, different plastic composites) to achieve high barrier properties, but this creates a nightmare for subsequent recycling separation. The future core design philosophy will shift towards "Design for Recyclability," prioritizing the use of **Mono-Materials**, such as all-PE or all-PP flexible packaging structures. While these may require more complex processes to achieve performance, they greatly simplify the recycling process [44][50].

Technological Impact:

This trend is forcing material suppliers and equipment manufacturers to develop new monomaterial films and corresponding packaging technologies, for example, coating technologies that can achieve high barrier properties within a single PE structure, or packaging machines capable of handling more "delicate" mono-material films.

Industrial Collaboration Point:

Achieving the widespread application of mono-materials urgently requires early involvement and continuous dialogue among packaging designers, materials scientists, equipment engineers, and recycling facility operators. Recyclers need to clearly communicate to designers which materials and structures are "recycling-friendly," while designers need to incorporate "recyclability" as a core design criterion while meeting brand and product requirements.

2.2 Smart Packaging and Digital Supply Chains

If the materials revolution is the evolution of packaging's "body," then intelligence and digitalization are the upgrade of its "brain" and "nervous system." Packaging is evolving from a silent physical presence to an active information node.

2.2.1 Active Packaging: Proactively Extending Food Life

Technology and Function: Active Packaging actively regulates the internal environment of the package by adding or integrating certain active substances into the packaging material, thereby extending the food's shelf life and maintaining its quality [41][43]. Common technologies include:

Gas Absorbers/Emitters:

Such as oxygen absorbers, ethylene absorbers, carbon dioxide emitters, used to regulate the gas environment for fresh produce, meat, and baked goods.

Humidity Regulators: Prevent products from getting damp or overly dry.

Antimicrobial Packaging:

Adding natural or synthetic antimicrobial agents (e.g., nano-silver, essential oils) to materials to inhibit microbial growth.

Industrial Collaboration Point:

The development of active packaging requires deep cooperation between **chemical/material companies**, **nanotechnology research institutions**, and **food producers**. Food producers

specify the preservation needs for specific products, while material and technology companies provide customized active packaging solutions and validate their effectiveness in real commercial environments.

2.2.2 Smart Packaging: Endowing Packaging with "Sensing" and "Communication" Capabilities

Technology and Application: Smart Packaging enables packaging to monitor, record, display, and transmit information about the product, its environment, and the supply chain by integrating electronic components and information technology [41][45][46]. Core technologies include:

Sensors and Indicators:

Time-Temperature Indicators (TTI) visually display through color changes whether the product has experienced improper temperature exposure; gas sensors can detect specific gases produced by spoilage; biosensors can even detect pathogens.

Information Carriers: QR Codes, Near Field Communication (NFC), and Radio-Frequency Identification (RFID) tags serve as bridges connecting the physical packaging with the digital world.

Value Creation:

1. Food Safety and Anti-Counterfeiting:

Real-time monitoring of product status, preventing expired or spoiled products from reaching the market; anti-counterfeiting verification through unique identification codes.

2. **Supply Chain Optimization:** Enables item-level tracking, optimizes inventory management, and reduces loss.

3. Consumer Interaction:

Consumers can scan QR codes or NFC to access product traceability information, nutritional advice, cooking methods, and participate in brand marketing activities, greatly enriching the consumer experience.

Industrial Collaboration Point:

Smart packaging is a typical ecosystem play. It requires **electronic component manufacturers** (providing low-cost, flexible sensors and chips), **printed electronics companies** (integrating electronic functions into packaging), **packaging converters**, **software platform providers** (processing and analyzing data), **brand owners**, and **retailers** to build it together. Without this ecosystem collaboration, smart packaging can only be an isolated technology demonstration, unable to generate commercial value.

2.2.3 Blockchain and Internet of Things (IoT): Building the Ultimate Trust Machine Technology Convergence:

When smart packaging (as IoT terminals) combines with blockchain technology, an unprecedented transparent and trustworthy supply chain system becomes possible [44][53][54]. Every food package with a unique identifier, along with its every movement in the supply chain (from farm, processing plant, warehouse to retail shelf) and every temperature record, can be recorded in real-time on an immutable blockchain.

Synergistic Effects:

For Consumers:

Simply scan the code on the package to see the complete life trajectory of the product "from

farm to fork," building unparalleled brand trust.

For Enterprises:

In case of food safety issues, pinpoint the source of the problem within seconds, narrowing the recall scope and minimizing losses.

For Regulators: Greatly simplifies regulatory processes and improves regulatory efficiency. **Industrial Collaboration Point:**

This requires the entire industry chain-----agricultural producers, food processors, logistics companies, warehousing service providers, retailers------to all join the same digital platform and agree on data standards and sharing protocols. This is an ambitious vision, but the immense value it brings is attracting more and more industry leaders to invest in it.

Chapter 3: The Evolution of the Global Regulatory Environment and Its Reshaping of the Industry Chain

In the next decade, no single factor will impact the global food packaging industry chain as profoundly, widely, and mandatorily as regulation. A government-led, circular economy-oriented rule reconstruction is underway globally. Enterprises must shift from passive reaction to proactive adaptation, internalizing compliance capabilities as a core competitiveness.

3.1 European Union: The Global "Trendsetter" for Circular Economy Regulations

The European Union, particularly its newly enacted and effective 2025 Packaging and Packaging Waste Regulation (PPWR), is undoubtedly the epicenter and leader of this global regulatory change [102][108][110]. The PPWR is no longer a Directive but a Regulation, meaning its provisions have direct, uniform legal effect in all member states. Its influence will radiate to all global enterprises wishing to access the EU market.

PPWR Deep Dive:

The core goal of the PPWR is to create a truly effective market for packaging circular economy. Its key clauses and implementation timeline pose disruptive requirements for every link in the industry chain:

1. Design for Recycling - Mandatory from 2030:

Clause Content:

From January 1, 2030, all packaging placed on the EU market must be assessed as "recyclable." The regulation will establish a detailed rating system (e.g., A/B/C/D/E grades), and only packaging reaching a certain grade (e.g., Grade C or above) will be deemed recyclable [161][164].

Industry Chain Impact:

This will fundamentally end packaging designs that are "theoretically recyclable but practically unrecyclable." Packaging designers and R&D personnel must collaborate with recycling experts from the very start of a project to ensure material selection, inks, adhesives, labels, and all other elements meet recycling requirements. Multi-layer composites, dark-colored PET bottles, and other hard-to-recycle packaging forms will face phase-out.

2. Minimum Recycled Content - Phased Implementation:

• Clause Content:

The regulation sets mandatory minimum recycled content targets for specific types of plastic packaging. For example, by 2030, PET packaging in contact with food must contain at least 30% recycled plastic; by 2040, this proportion will increase to 65%

[161][167].

Industry Chain Impact:

This will create a stable and huge demand market for recycled plastics. Brand owners must restructure their procurement strategies to ensure access to sufficient, compliant (especially food-grade) recycled raw materials. This will greatly promote the development and investment in chemical recycling and advanced mechanical recycling technologies and require the establishment of reliable recycled material traceability and certification systems.

3. Restriction on Hazardous Substances:

• Clause Content:

The PPWR explicitly restricts the content of heavy metals such as lead, cadmium, mercury, and hexavalent chromium. More importantly, it issues a ban on Per- and Polyfluoroalkyl Substances (PFAS)-----commonly used in water and oil repellent coatings for paper packaging-----prohibiting their use in food contact packaging from 2026 [165][167][230].

• Industry Chain Impact:

This forces material suppliers and packaging manufacturers to immediately seek and validate PFAS alternatives, such as new water-based coatings or other bio-based solutions. For industries like fast food and baking that heavily use greaseproof paper packaging, this will be a major supply chain switch.

4. Reuse and Refill Targets:

Clause Content:

To reduce packaging at the source, the PPWR sets reuse packaging proportion targets for specific sectors (e.g., beverages, takeaway) for 2030 and 2040. For example, by 2030, 20% of takeaway beverage sales must use reusable packaging or consumerowned containers [25][164].

Industry Chain Impact:

This will spawn new business models. Brand owners need to design durable, easy-to-clean, standardized reusable packaging and collaborate with logistics companies, cleaning service providers, and retailers to establish efficient reverse logistics systems for return, cleaning, and refilling.

5. Clear and Harmonized Labelling Requirements:

Clause Content:

To end consumer confusion facing chaotic recycling symbols, the PPWR will establish a unified EU-wide labelling system, clearly informing consumers about packaging material composition and how to correctly sort and dispose of it. Simultaneously, packaging will need to carry a QR code providing more detailed information on recyclability, recycled content, etc. [101][109][175].

Industry Chain Impact:

Enterprises need to update all their packaging designs and printing layouts to comply with the new labelling regulations. Concurrently, they must establish corresponding data management systems to support the generation and maintenance of information required by the QR codes.

PPWR's Profound Implications for the Global Supply Chain:

The EU is leveraging its huge market power to set a new "gold standard" for the global packaging industry. Any enterprise wanting to compete in the global market (especially in developed markets) must align its supply chain operating logic with the requirements of the PPWR.

3.2 North America: Incremental Change Led by State-Level Legislation

Unlike the EU's "top-down" unified legislation, regulatory change in North America exhibits a "bottom-up," state-led characteristic, but its overall direction is highly consistent with the EU.

Extended Producer Responsibility (EPR):

Several US states (e.g., Maine, Oregon, Colorado, California) have passed EPR legislation for packaging. These laws require packaging producers (mainly brand owners) to pay for the collection, sorting, and recycling of packaging waste, thereby internalizing end-of-life processing costs and incentivizing source reduction and easy-to-recycle design.

California SB 54 Bill:

This is one of the most comprehensive packaging waste regulations in the US to date, requiring that by 2032, all single-use packaging and plastic utensils in California must be recyclable or compostable, and setting ambitious source reduction and plastic recycling rate targets [29].

PFAS Restrictions:

Similarly, at the state level, over ten states have legislated to restrict or ban PFAS in food packaging, a trend spreading nationwide [221][223].

Canada has taken more active action at the federal level, introducing a ban on certain plastic products and developing national rules on recycled content and recycling labels [368][373].

Impact on Supply Chains:

The "fragmentation" of North American regulations brings significant compliance complexity for enterprises operating nationwide. Enterprises may need to prepare different versions of packaging for different state markets. However, this also forces enterprises to establish a flexible and transparent supply chain capable of tracking product destinations and meeting specific local requirements. Wise enterprises will choose to design their national products according to the standards of the strictest states (like California) to achieve management simplification.

3.3 Asia-Pacific Region: Accelerated Catch-Up and Localized Differences

Asia-Pacific countries are joining this wave of global environmental regulations at different speeds and in different ways.

China:

As a manufacturing and consumption powerhouse, China's policy trends are crucial. In recent years, China has continuously updated its national standards for food contact materials (GB standards, e.g., GB 9685) and implemented multiple rounds of "plastic restriction orders" and "plastic ban orders," promoting the application of biodegradable materials and the construction of recycling systems [221][224][424].

Japan:

Japan passed the "Plastic Resource Circulation Promotion Law," encouraging enterprises to reduce plastic use and promote recycling throughout the entire lifecycle from design, production to sales and recycling, and imposing reduction requirements on businesses providing single-use plastic products [221][225][369].

Australia:

The Australian government and industry jointly developed the "2025 National Packaging Targets," including specific indicators such as achieving 100% reusable, recyclable, or compostable packaging by 2025, and using an average of 50% recycled content in plastic packaging [228][367][423].

Impact on Supply Chains:

The regulatory environment in the Asia-Pacific region features a mix of "catching up" and "differentiation." When entering or operating in this region, enterprises cannot adopt a "one-size-fits-all" strategy. They must equip professional legal and supply chain teams, closely track policy dynamics in various countries, and adopt localized compliance strategies. For example, in the Chinese market, understanding and complying with complex GB standards is a primary task; while in Australia, product and supply chain design needs to revolve around its "2025 Targets."

3.4 Strategic Significance of Regulatory Convergence for Global Supply Chain Collaboration

Although the specific details and implementation timelines of regulations vary by country, their core spirit-----waste reduction, promoting circularity, information transparency-----is converging globally. This trend presents unprecedented requirements and opportunities for corporate supply chain collaboration:

Collaboration Becomes Essential for Compliance:

No single enterprise can independently cope with such a complex and dynamic global regulatory network. Brand owners must collaborate with upstream material suppliers to ensure raw material compliance; with midstream packaging manufacturers to ensure design and production compliance; and with downstream recyclers to ensure proper treatment of packaging waste and secure recycled material supply.

Establish a "Global Compliance Database":

Leading enterprises will establish a dynamic global packaging regulation database and integrate it into their Product Lifecycle Management (PLM) systems. This requires close collaboration between legal, R&D, procurement, and supply chain departments.

Build "Compliance Alliances":

Enterprises can collaborate with peers, industry associations, and Non-Governmental Organizations (NGOs) to jointly lobby governments for more scientific and reasonable regulations, share best practices, and jointly invest in the infrastructure needed to solve common challenges (e.g., chemical recycling plants).

In summary, the future global food packaging market will be an arena strictly defined by regulations. Enterprises unable to effectively adapt to the rules will be eliminated, while those that can transform compliance challenges into competitive advantages through industrial collaboration will win the future.

Chapter 4: Industrial Collaboration: Models, Cases, and Future Outlook

In the complex landscape driven by the intertwined forces of technology, market, and regulation, the era of "going it alone" has ended. Industrial collaboration, i.e., the deep cooperative relationships established between enterprises at different stages of the value chain, and even cross-border participants, is evolving from an option to a necessity for enterprise survival and development. This chapter will delve into the necessity of industrial

collaboration, key models, analyze its specific value through cases, and finally, look at its future trends.

4.1 Why Engage in Industrial Collaboration?

For food packaging enterprises caught in the vortex of change, building industrial collaboration networks can deliver four core values:

1. Coping with Exponentially Growing Complexity:

Future packaging solutions need to simultaneously meet multiple, sometimes conflicting requirements: sustainability (e.g., using recycled content, recyclable design), intelligence (e.g., integrated sensors), functionality (e.g., high barrier), and regulatory compliance (e.g., PPWR compliance). This involves knowledge from multiple fields like materials science, electronic engineering, chemistry, and data science, far exceeding the technological and capability boundaries of any single enterprise. Collaboration is the only way to integrate diverse expertise and tackle complex challenges.

2. Sharing High Costs and Uncertain Risks:

Whether it's R&D for a new bio-based material, investing in a chemical recycling plant, or building an IoT platform supporting smart packaging, all require huge upfront capital investment and carry high technological and market risks. By establishing joint R&D centers, co-investing in infrastructure, or setting up industry funds, collaborating enterprises can effectively share costs and risks, enabling them to attempt disruptive innovations that a single enterprise would not or could not undertake.

3. Accelerating the Commercialization of Innovation Outcomes:

In the traditional linear innovation model, a new material or technology might take years to go from lab to shelf. In a collaborative model, material suppliers, packaging manufacturers, brand owners, and retailers participate together from the early stages of a project, forming a fast-iterating feedback loop. Brand owners can clearly articulate market demands, material suppliers can conduct targeted development accordingly, and packaging manufacturers can simultaneously verify feasibility on production lines. This concurrent engineering approach can significantly shorten time-to-market, helping enterprises seize market opportunities.

4. Building Unique and Hard-to-Replicate Ecosystem Barriers:

In future competition, the most stable moat will no longer be a single product or technology, but an efficient, stable, closed-loop industrial ecosystem. A successful collaborative network means having stable, high-quality recycled material supply, unique customized smart packaging solutions, and seamlessly connected digital supply chains. This network relationship based on deep mutual trust and aligned interests is difficult for competitors to imitate and surpass in the short term, thus forming a powerful structural competitive advantage.

4.2 Key Models of Industrial Collaboration

Based on the relationship between participants and the depth of cooperation, industrial collaboration can be divided into the following main models:

Vertical Collaboration:

This involves deep integration between upstream and downstream enterprises in the value chain.

Manifestations:

Packaging material suppliers (e.g., Dow Chemical), packaging manufacturers (e.g., Amcor), and food brand owners (e.g., Nestlé) form joint development teams to co-design packaging that meets both brand needs and sustainability goals.

Core Value:

Achieves seamless connection between demand and supply, developing highly customized solutions. For example, brand owners gain exclusive access to innovative materials, while material suppliers secure long-term, large customer orders.

Horizontal Alliance Collaboration:

This is cooperation between competitors at the same stage of the value chain, usually focused on solving common industry problems.

Manifestations:

Multiple large food or beverage brand owners (e.g., Coca-Cola, PepsiCo, Unilever) jointly join an industry initiative, such as the Consumer Goods Forum's "Plastic Waste Alliance of Action," committing to unified packaging design standards to facilitate recycling, or jointly investing in regional recycling facilities.

Core Value:

Creates economies of scale, promotes the establishment of industry standards, and collectively influences policy formulation. When industry giants speak with one voice, their influence is significantly amplified.

Cross-Border Collaboration:

This involves cooperation between enterprises from completely different industries, aiming to spark innovation through knowledge and technology exchange.

Manifestations:

Food packaging companies collaborate with high-tech companies (e.g., IBM, Google) to develop IoT platforms for smart packaging; collaborate with biotechnology companies (e.g., Novozymes) to develop bio-based materials; collaborate with automotive or electronics companies to explore the application of their advanced recycling technologies in the packaging field.

Core Value:

Introduces "disruptive" thinking and technology, potentially creating entirely new market segments and business models.

4.3 Case Study: The Coca-Cola Company's "World Without Waste" Strategy

Coca-Cola's "World Without Waste" strategy and its implementation process provide an excellent example of how to drive change through extensive industrial collaboration.

Background:

As the world's largest beverage company, Coca-Cola uses vast amounts of plastic packaging and faces enormous public and regulatory pressure. Its "World Without Waste" strategy sets three core goals: 1) By 2025, 100% of packaging will be recyclable; 2) By 2030, collect and recycle a bottle or can for every one sold; 3) By 2030, use at least 50% recycled material in packaging.

Collaboration Practices:

1. Collaboration with Material Suppliers:

To achieve the goal of using recycled materials, Coca-Cola has established long-term

strategic partnerships with major PET suppliers (e.g., Indorama Ventures, Far Eastern New Century), jointly investing in building food-grade recycled PET (rPET) production capacity. This ensures a stable supply of high-quality rPET for Coca-Cola.

2. Collaboration with Packaging Technology Companies:

Coca-Cola collaborated with packaging technology company Paboco to develop the world's first paper bottle prototype. This project brought together paper material experts, bioplastics companies, and bottle manufacturing engineers, representing a typical cross-border collaboration.

3. Collaboration with Recycling Systems:

Coca-Cola actively participates in and invests in various countries' Deposit Return Systems (DRS), collaborating with recycling companies, retailers, and government agencies to improve the recycling rate of beverage bottles. For example, it supports the construction of DRS in the UK and other regions.

4. Collaboration with Competitors:

Coca-Cola, along with PepsiCo, Nestlé Waters, and other companies, joined the "Polypropylene Recycling Coalition" in the US, jointly funding to improve the recycling value chain for polypropylene (PP) materials, addressing the recycling challenges of PP bottle caps.

Enlightenment:

Coca-Cola's case demonstrates that even a giant company cannot achieve its ambitious sustainability goals alone. It must build a vast collaborative network covering the entire lifecycle of packaging, from design, material supply, recycling to reuse. This network is the true guarantee for achieving its "World Without Waste" vision.

4.4 Future Outlook: The Evolution of Industrial Collaboration Models

Looking ahead to 2035, industrial collaboration will exhibit new trends:

1. From "Project-Based" to "Platform-Based":

Future collaboration will no longer be limited to specific projects but will evolve into a stable, long-term "platform-based" cooperation model. For example, multiple brand owners, packaging suppliers, and recycling companies jointly establish a digital platform to share packaging design data, recycled material supply and demand information, and recycling data in real-time, achieving optimal allocation of resources across the entire chain.

2. Data Becomes the Core Asset of Collaboration:

In the era of smart packaging and digital supply chains, data generated by packaging throughout its lifecycle will become a valuable asset. How to establish rules for data ownership, usage rights, and benefit distribution among collaborative partners will be a key issue determining the depth and stability of collaboration.

3. The Rise of "Circular Economy Clusters":

Geographically, enterprises will increasingly cluster around key infrastructure (e.g., large chemical recycling plants, pulp mills). This facilitates the formation of localized, small-scale circular economies, where by-products or waste from one enterprise become raw materials for another, greatly reducing logistics costs and carbon footprints.

4. Financial Institutions Deeply Embed in the Collaboration Network:

Green finance and ESG (Environmental, Social, and Governance) investing will become important drivers of collaboration. Financial institutions will provide more favorable financing conditions for collaborative projects that meet circular economy principles, and may even directly participate in collaboration as investors or resource integrators.

In summary, industrial collaboration is no longer a slogan but a core capability that every enterprise in the food packaging field must cultivate. Enterprises that can skillfully build, manage, and benefit from collaborative networks will become the ultimate winners in the future competitive landscape.

Conclusion and Strategic Recommendations

The next decade (2026-2035) will be a critical period of reshaping for the global food packaging industry. The triple drivers of sustainability, intelligence, and regulation will profoundly change every aspect from product design, material selection, production methods, supply chain operations to consumer interaction. In this magnificent transformation, opportunities and challenges coexist. Enterprises that can accurately grasp the trends and proactively adjust their strategies will thrive, while those who hesitate or resist will inevitably be marginalized or eliminated.

Core Conclusions of This Report:

1. The Market is Growing, but the Logic of Growth is Changing:

The market will continue to expand, but growth will mainly come from high-value-added areas such as sustainable and smart packaging. Traditional, cost-oriented packaging models will face shrinking profit margins.

2. Technology is the Engine, Collaboration is the Fuel:

Breakthroughs in materials science and information technology provide possibilities for the future, but truly commercializing these technologies and scaling their application requires close collaboration across the entire industry chain. Closed innovation is no longer viable.

3. Regulation is the Rule, Compliance is the Foundation:

A global wave of regulations centered on the circular economy is setting new rules for the game. Compliance is no longer an afterthought but a prerequisite for market access. Enterprises must integrate compliance considerations into every stage from product conception.

4. Competition is Between Ecosystems, Not Individual Enterprises:

Future competition will no longer be between Company A and Company B, but between the ecosystem led by Company A and the alliance led by Company B. The ability to build and operate an ecosystem will determine an enterprise's position in the industry chain.

Strategic Recommendations for Senior Corporate Executives:

Faced with this foreseeable future, corporate leaders must act decisively and lead their organizations in a comprehensive strategic transformation.

1. Strategic Level: Top-Level Design for a Circular and Intelligent Future

o Integrate "Circular-Ready" and "Digital-Enabled" into the corporate vision and core strategy. Ensure that the board and senior management reach a consensus on the urgency and importance of this transformation.

- o **Establish a dedicated cross-departmental "Sustainable Packaging Steering Committee"** led by a C-level executive, responsible for formulating the company's packaging strategy, setting clear, measurable medium to long-term goals (e.g., 100% recyclable packaging by 2030, 30% use of recycled materials), and tracking progress.
- Increase investment in sustainable packaging and smart technology R&D, or establish a special venture capital fund to invest in promising startups in related fields.

2. R&D and Innovation Level: Open Cooperation to Build a Technological Moat

- Shift the R&D model from "internal development" to "open innovation." Actively seek external partners, including universities, research institutions, startups, and even competitors, to jointly tackle key technological challenges.
- o **Focus R&D resources on two main directions:** First, next-generation sustainable materials (e.g., high-performance mono-materials, new biobased materials); Second, low-cost, scalable smart packaging solutions (e.g., printed sensors, blockchain traceability platforms).
- Incorporate "Design for Recycling" and "Carbon Footprint Assessment" as mandatory steps in the new product development process.
- 3. Supply Chain Level: Reshaping for Resilience and Compliance
 - chain, identify compliance risks (e.g., use of PFAS, reliance on hard-to-recycle composite materials) and single points of failure.
 - o **Proactively restructure the supplier system,** prioritize cooperation with suppliers with strong technological innovation capabilities and a forward-looking vision on sustainability, and establish long-term strategic partnerships.
 - o **Invest in building supply chain digital transparency,** utilize IoT and blockchain technology to achieve end-to-end traceability of products, providing data support for compliance demonstration and rapid response to potential risks.

4. Organizational and Cultural Level: Breaking Silos and Fostering Collaborative Genes

- o **Break down departmental barriers (silos),** establish incentive mechanisms that encourage internal collaboration, and promote seamless cooperation between R&D, procurement, production, marketing, and legal departments.
- Cultivate employees' awareness and capabilities in sustainability and collaboration, through training and communication, ensure that every employee understands the company's strategic direction and their role within it.
- o Actively participate in industry alliances and standard-setting organizations (e.g., Ellen MacArthur Foundation, Consumer Goods Forum), seize the discourse power in shaping the future industry landscape, and gain access to the latest industry trends and best practices.

The future has arrived, but it is not evenly distributed. The foresight, courage, and execution of decision-makers at this moment will determine the position of their enterprises in the next decade and beyond. Let us join hands in collaboration to embrace this magnificent transformation of the food packaging industry and create a more sustainable, intelligent, and efficient future together.

Sources

- 1. ADANI WILMAR LIMITED
- 2. Packaged Food Market Size Expected To Reach \$ 3,407.2 Billion by 2030 | Conagra, General Mills, Hormel Foods Corp
- 3. 식품 포장 기술 및 장비 시장
- 4. Global Packaging Industry A High-Level Overview
- 5. 2026 年全球食品包装市场将达 6063 亿美元[J].中国包装,2020.
- 6. Global Packaging Trends: Global Growth Markets for Packaging 2019
- 7. J. Viitanen, Kirsi Kataja et al. "Elintarvikepakkaaminen muuttaa muotoaan."
- 8. 沪江材料: 国内高阻隔软包装专精特新小巨人, 一流客户构筑护城河
- 9. FTA Europe News Issue 26 December 2023
- 10. 2025-2031 年全球与中国食品包装袋行业全景调查与战略咨询报告
- 11. 南京沪江复合材料股份有限公司招股说明书(申报稿)
- 12. 全球及中国食品包装材料行业市场数据调研及前景趋势预测报告(2025-2030年)
- 13. 2024-2030 年全球与中国食品包装行业现状全面调研与发展趋势预测报告
- 14. 规模 6 千亿美元食品包装市场呈现两大发展趋势[J].中国包装,2020.
- 15. Advanced Rheology and Its Applications [Working Title].
- 16. 机械设备周报 2020 年 6 月第 3 期
- 17. 全球与中国食品包装材料行业市场分析及前景趋势预测(2024-2030年)
- 18. S. Ciano, Mélanie Di Mario et al. "Towards Less Plastic in Food Contact Materials: An In-Depth Overview of the Belgian Market." Foods (2023).
- 19. 2025-2031 年全球与中国食品包装行业全景调研及投资战略研究报告
- 21. INNOVATIVE AND SUSTAINABLE PACKAGING SOLUTIONS FROM FINLAND
- 22. Pushing boundaries by creating 100% biodegradable packaging
- 23. 芬兰创新和可持续包装解决方案
- 24. Yuelong Zhao, Hui-yun Sun et al. "Hemicellulose-Based Film: Potential Green Films for Food Packaging." Polymers (2020).
- 25. GOODFOOD Methodology Learning to become sustainable food consumers Guidelines for secondary school teachers
- 26. Md. Zobair Al Mahmud, M. Mobarak et al. "Emerging trends in biomaterials for sustainable food packaging: A comprehensive review." Heliyon (2024).
- 27. Alisha Cordeiro, Mariya Hussain et al. "Advancements in Packaging Materials: Trends, Sustainability, and Future Prospects." Circular Economy and Sustainability (2025).
- 28. Think: Act | The sustainability game
- 29. Snack Food Production in the US
- 30. Florencia Versino, F. Ortega et al. "Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations." Foods (2023).

- 31. Packaging your ideas... System solutions
- 32. Edible Food Packaging: Applications, Innovations and Sustainability
- 33. Communication of Environmental Innovations to Consumers: A Case of Renewable Packaging for Tetra Pak
- 34. Environmental tool evaluation and databased benchmarking of sustainable packaging materials for Micvac technology
- 35. Recent advances in the fabrication, characterization and application of starch-based materials for active food packaging: hydrogels and aerogels
- 36. Omayra B. Ferreiro, Magna Monteiro. "Food Packaging Film Preparation: From Conventional to Biodegradable and Green Fabrication." ENVABIO100 (2023).
- 37. Food packaging for better food systems
- 38. Tetra Laval 2022/2023
- 39. FUTURE OF PACKAGING AND SUSTAINABILITY
- 41. HRANOM DO ZDRAVLJA | WITH FOOD TO HEALTH Online izdanje | Online edition www.hranomdozdravlja.com/do=casopis ISSN 2232-9544
- 42. Packaging Innovation Briefing Report December 2023
- 43. BOOK OF PROCEEDINGS FOR THE 11TH REGIONAL FOOD SCIENCE AND TECHNOLOGY SUMMIT (ReFoSTS)
- 44. PACKAGING TRENDS REPORT WORLDSTAR AWARD (before Covid-19)
- 45. 8th AMIFOST 2025: International Conference on The Future of Food Science & Technology: Innovations, Sustainability and Health
- 46. One Health Horizons: Integrating Biodiversity, Biosecurity, and Sustainable Practices
- 47. INNOVATIONS IN MILK PACKAGING: INTEGRATING ACTIVE, INTELLIGENT, AND SUSTAINABLE TECHNOLOGIES FOR ENHANCED QUALITY, SAFETY, AND ENVIRONMENTAL IMPACT
- 48. C. Realini, B. Marcos. "Active and intelligent packaging systems for a modern society.." Meat science (2014).
- 49. K. Yam, P. Takhistov et al. "Intelligent Packaging: Concepts and Applications." Journal of Food Science
- 50. Packaging Innovation Briefing Report April 2023
- 51. 包装未来式: 全球包装技术创新前瞻报告 Packaging Future: Global Packaging Technology Innovation Outlook
- 52. M. Vanderroost, P. Ragaert et al. "Intelligent food packaging: the next generation." Trends in Food Science and Technology (2014).
- 53. Intelligent Packaging Advances to Meet New Needs
- 54. WPONEWS: The voice of the global packaging community
- 55. Novel food packaging technologies: Innovations and future prospective
- 56. J. Kerry, M. O'Grady et al. "Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review.." Meat science (2006).
- 57. D. Dainelli, N. Gontard et al. "Active and intelligent food packaging: legal aspects and safety concerns." Trends in Food Science and Technology (2008).
- 58. EMERGING TRENDS IN MULTIDISCIPLINARY TECHNOLOGY AND SCIENCE Volume I
- 59. Patrícia Müller, M. Schmid. "Intelligent Packaging in the Food Sector: A Brief Overview." Foods (2019).

- 61. 2025 Edible Packaging Market Report Industry Size, Competition, Trends and Growth Opportunities by Region Forecast by Types and Applications (2024-2032)
- 62. Snack Food Packaging Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034
- 63. North America Market Outlook: Q1 2025
- 64. 식품 포장 기술 및 장비 시장
- 65. Global Packaging Industry A High-Level Overview
- 66. 2026 年全球食品包装市场将达 6063 亿美元[J].中国包装,2020.
- 67. ADANI WILMAR LIMITED
- 68. 全球及中国消费包装行业市场数据调研及前景趋势预测报告(2025-2030年)
- 69. 全球及中国食品包装材料行业市场数据调研及前景趋势预测报告(2025-2030年)
- 70. 2024-2030 年全球与中国食品包装行业现状全面调研与发展趋势预测报告
- 71. FTA Europe News Issue 26 December 2023
- 72. 中国食品包装行业发展现状研究与投资趋势预测报告(2025-2032年)
- 73. 2025-2031 年全球与中国食品包装行业全景调研及投资战略研究报告
- 74. 2023-2029 年全球与中国包装食品行业全景调查与未来前景预测报告
- 75. Market Research: Food Packaging Market by Material (Paper & Board, Plastic, Glass, Metal), Type (Rigid, Semi-Rigid, Flexible), Application (Dairy, Bakery, Confectionery, Convenience Foods, Fruits, Vegetables, Meat, Sauces, Dressings) Global Trends & Forecast to 2019
- 76. Gasporox Delårsrapport: April Juni 2025
- 77. Anni Nokelainen. "Elintarvikkeiden pakkausteknologian kaupallistamisen valmistelu."
- 81. Annual Report for the Financial Year 2023-24
- 82. PUDUMJEE PAPER PRODUCTS LTD. Annual Report 2023-24
- 83. The Global Commitment 2023 Progress Report
- 84. Packaging Innovation Briefing Report December 2023
- 85. Woolworths Group Submission to the ACCC Supermarkets Inquiry 2024-25 Public Response to the Interim Report
- 86. 2023 年半年度报告
- 87. Shaping tomorrow: The 2,000 most influential companies for the SDGs
- 88. Red Herring Top 100: The Most Promising Companies on Both Sides of the Atlantic
- 89. H. Spieser. "Smart and Safe packaging."
- 90. WORLDSTAR GLOBAL PACKAGING AWARDS 2023 Official Winners Guide
- 91. Packaging Innovation Briefing Report April 2023
- 92. Innovation in Top Ten MNCs Activating in Consumer Goods Industry
- 93. P. Salgado, Luciana Di Giorgio et al. "Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers." Frontiers in Sustainable Food Systems (2021).
- 94. A Flexible Packaging Path to a Circular Economy Flexible Packaging Sustainability Roadmap
- 95. BOXON Sustainability Report 2023
- 96. J. Kaput, M. Kussmann et al. "Enabling nutrient security and sustainability through systems research." Genes & Nutrition (2015).
- 101. REGULATION (EU) 2025/40 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
- 102. 2025 年全球食品接触材料标准政策展望

- 103. New EU rules on packaging and waste will transform its supply chain
- 104. REGOLAMENTO (UE) 2025/40 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 19 dicembre 2024 sugli imballaggi e i rifiuti di imballaggio, che modifica il regolamento (UE) 2019/1020 e la direttiva (UE) 2019/904 e che abroga la direttiva 94/62/CE
- 105. Packaging and Packaging Waste Regulation (PPWR) and GS1 Standards White paper on how to use GS1 standards to support recycling use cases
- 106. Labels & Labeling: The World of Package Printing
- 107. REGULATION (EU) 2025/40 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 December 2024 on packaging and packaging waste, amending Regulation (EU) 2019/1020 and Directive (EU) 2019/904, and repealing Directive 94/62/EC
- 108. Merkblatt: Die neue europäische Verpackungsverordnung VO (EU) 2025/40 ('Packaging and Packaging Waste Regulation' PPWR)
- 109. VERORDNUNG (EU) 2025/40 DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom
- 19. Dezember 2024 ü ber Verpackungen und Verpackungsabfälle, zur Änderung der Verordnung (EU) 2019/1020 und der Richtlinie (EU) 2019/904 sowie zur Aufhebung der Richtlinie 94/62/EG
- 110. Merkblatt: Die neue europäische Verpackungsverordnung (PPWR) 2025
- 111. PPWR Survival Guide
- 112. SUSTAIN: Sharing U.S. Technology to Aid in the Improvement of Nutrition
- 113. INKS & COATINGS for Food Packaging Applications
- 114. 《全球合规快讯》 GLOBAL COMPLIANCE EXPRESS 法规更新、召回案例解读 REGULATIONS & LAWS, RECALL CASES STUDY
- 115. EU's Regulation (EU) 2025/40 on Packaging and Packaging Waste Entered into Force
- 116. REACH24H 瑞欧科技 2022 年度报告
- 121. North America Market Outlook: Q1 2025
- 122. Snack Food Packaging Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034
- 123. 包装未来式: 全球包装技术创新前瞻报告 Packaging Future: Global Packaging Technology Innovation Outlook
- 124. Proteins: A biodegradable biopolymer for edible films and coating
- 125. Gasporox Delårsrapport: April Juni 2025
- 126. 9th Conference on Information and Graphic Arts Technology PROCEEDINGS
- 127. 2025-2031 年全球与中国食品和饮料包装市场深度调查与投资前景分析报告
- 128. 2024-2030 年全球与中国食品包装行业现状全面调研与发展趋势预测报告
- 129. 全球及中国消费包装行业市场数据调研及前景趋势预测报告(2025-2030年)
- 130. 식품 포장 기술 및 장비 시장
- 131. 2024-2030 年全球与中国食品包装市场全景调查与投资战略咨询报告
- 132. 全球与中国包装行业研究及市场前景分析报告(2025-2030年)
- 133. 2023-2029 年全球与中国食品饮料包装市场深度调查与产业竞争格局报告
- 134. Market Statistics and Future Trends in Global Packaging
- 135. FTA Europe News Issue 26 December 2023
- 136. 2024-2030 年全球与中国包装食品的可追溯性行业全景调研及投资潜力分析报告
- 137. 2025-2030 年食品包装行业深度分析及"十五五"发展规划指导报告
- 138. Konzernabschluss zum Geschäftsjahr vom 01. Januar 2017 bis zum 31. Dezember 2017

- 141. Annual Report for the Financial Year 2023-24
- 142. PUDUMJEE PAPER PRODUCTS LTD. Annual Report 2023-24
- 143. The Global Commitment 2023 Progress Report
- 144. Woolworths Group Submission to the ACCC Supermarkets Inquiry 2024-25 Public Response to the Interim Report
- 145. Packaging Innovation Briefing Report December 2023
- 146. Shaping tomorrow: The 2,000 most influential companies for the SDGs
- 147. Puratos Sustainability Report 2023
- 148. Evolving Spot Markets & Pricing Benchmarks: Key Trends and Their Implications
- 149. 2023 年半年度报告
- 150. WORLDSTAR GLOBAL PACKAGING AWARDS 2023 Official Winners Guide
- 151. Packaging Innovation Briefing Report April 2023
- 152. Smurfit Westrock Sustainability Report 2024
- 153. Red Herring Top 100: The Most Promising Companies on Both Sides of the Atlantic
- 154. P. Salgado, Luciana Di Giorgio et al. "Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers." Frontiers in Sustainable Food Systems (2021).
- 155. E. Alexander, D. Yach et al. "Major multinational food and beverage companies and informal sector contributions to global food consumption: implications for nutrition policy." Globalization and Health (2011).
- 156. Innovation in Top Ten MNCs Activating in Consumer Goods Industry
- 157. SUSTAINED PASSION: PEPSICO'S PACKAGING REVOLUTION
- 158. A Flexible Packaging Path to a Circular Economy Flexible Packaging Sustainability Roadmap
- 161. Packaging and Packaging Waste Regulation (PPWR) and GS1 Standards White paper on how to use GS1 standards to support recycling use cases
- 162. 2025 年全球食品接触材料标准政策展望
- 163. REGULATION (EU) 2025/40 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
- 164. PPWR Survival Guide
- 165. New EU rules on packaging and waste will transform its supply chain
- 166. REGOLAMENTO (UE) 2025/40 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 19 dicembre 2024 sugli imballaggi e i rifiuti di imballaggio, che modifica il regolamento (UE) 2019/1020 e la direttiva (UE) 2019/904 e che abroga la direttiva 94/62/CE
- 167. Unpacking the New EU Packaging Regulation (PPWR): A Summary of Key Requirements
- 168. Merkblatt: Die neue europäische Verpackungsverordnung (PPWR) 2025
- 169. REGULATION (EU) 2025/40 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 December 2024 on packaging and packaging waste, amending Regulation (EU) 2019/1020 and Directive (EU) 2019/904, and repealing Directive 94/62/EC
- 170. 《全球合规快讯》 GLOBAL COMPLIANCE EXPRESS 法规更新、召回案例解读 REGULATIONS & LAWS, RECALL CASES STUDY
- 171. Merkblatt: Die neue europäische Verpackungsverordnung VO (EU) 2025/40 ('Packaging and Packaging Waste Regulation' PPWR)
- 172. Work Package 3 Deliverable D3.1 State of the art of food packaging systems
- 173. INKS & COATINGS for Food Packaging Applications

- 174. European Horizons: PATHWAYS FOR SINGAPOREAN BUSINESS EXPANSION Navigating Market Entry through Hungary and Central and Eastern Europe 2024/2025
- 175. VERORDNUNG (EU) 2025/40 DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom
- 19. Dezember 2024 ü ber Verpackungen und Verpackungsabfälle, zur Änderung der Verordnung (EU) 2019/1020 und der Richtlinie (EU) 2019/904 sowie zur Aufhebung der Richtlinie 94/62/EG
- 176. Labels & Labeling: The World of Package Printing
- 177. Recycling food packaging & food waste in plastics revolution
- 181. 2025 Edible Packaging Market Report Industry Size, Competition, Trends and Growth Opportunities by Region Forecast by Types and Applications (2024-2032)
- 182. Proteins: A biodegradable biopolymer for edible films and coating
- 183. Snack Food Packaging Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034
- 184. North America Market Outlook: Q1 2025
- 185. 包装未来式: 全球包装技术创新前瞻报告 Packaging Future: Global Packaging Technology Innovation Outlook
- 186. Biodegradable Packaging Market to Reach USD 168.7 Billion by 2033, Growing at a 5.9% CAGR
- 187. Gasporox Delårsrapport: April Juni 2025
- 188. Navigating Dynamic Shifts in the Food and Beverage Industry
- 189. Ajinomoto Group Factbook 2025
- 190. 식품 포장 기술 및 장비 시장
- 191. Market Statistics and Future Trends in Global Packaging
- 192. Corporate social responsibility report Extract from the universal registration document
- 193. 2024-2030 年全球与中国食品包装行业现状全面调研与发展趋势预测报告
- 194. 23rd Euro Global Summit on Food and Beverages
- 195. Huhtamaki Annual Report 2003
- 196. World Food Trends 2020+ Pan Asian Soy Food Event
- 197. 2025-2031 年全球与中国食品和饮料包装市场深度调查与投资前景分析报告
- 198. 2008-2009 年中国包装行业研究咨询报告
- 199. 2023-2029 年全球与中国食品饮料包装市场深度调查与产业竞争格局报告
- 200. Market Research: Food Packaging Market by Material (Paper & Board, Plastic, Glass, Metal), Type (Rigid, Semi-Rigid, Flexible), Application (Dairy, Bakery, Confectionery, Convenience Foods, Fruits, Vegetables, Meat, Sauces, Dressings) Global Trends & Forecast to 2019
- 201. PUDUMJEE PAPER PRODUCTS LTD. Annual Report 2023-24
- 202. Annual Report for the Financial Year 2023-24
- 203. The Global Commitment 2023 Progress Report
- 204. Агропродмаш 2023
- 205. Shaping tomorrow: The 2,000 most influential companies for the SDGs
- 206. Packaging Innovation Briefing Report December 2023
- 207. Puratos Sustainability Report 2023
- 208. Evolving Spot Markets & Pricing Benchmarks: Key Trends and Their Implications
- 209. WORLDSTAR GLOBAL PACKAGING AWARDS 2023 Official Winners Guide

- 210. 2023 年半年度报告
- 211. Packaging Innovation Briefing Report April 2023
- 212. H. Spieser. "Smart and Safe packaging."
- 213. 2013 TOP 100 GLOBAL Consumer Packaged Goods Companies NON-FOOD/BEVERAGE
- 214. Innovation in Top Ten MNCs Activating in Consumer Goods Industry
- 215. 2024 年度报告
- 216. A Flexible Packaging Path to a Circular Economy Flexible Packaging Sustainability Roadmap
- 217. Banu Bayram, G. Ozkan et al. "Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials." Molecules (2021).
- 218. E. Alexander, D. Yach et al. "Major multinational food and beverage companies and informal sector contributions to global food consumption: implications for nutrition policy." Globalization and Health (2011).
- 221. INKS & COATINGS for Food Packaging Applications
- 222. Packaging and Packaging Waste Regulation (PPWR) and GS1 Standards White paper on how to use GS1 standards to support recycling use cases
- 223. Cleansing Supply Chains of PFAS 'Forever Chemicals'
- 224. Food Packaging: A Guide to Best Practice for Sheetfed Offset Print
- 225. Improving Transparency of Pre-packaged Food Packaging and Labelling Laws, Regulations and Best Practices: Conference and Compendium
- 226. REACH24H 2024 ANNUAL REPORT
- 227. 《全球合规快讯》
- 228. 出口商品技术指南 出口日本、韩国、澳大利亚、新西兰商品包装技术指南
- 229. 2025 年全球食品接触材料标准政策展望
- 230. 《全球合规快讯》 GLOBAL COMPLIANCE EXPRESS 法规更新、召回案例解读 REGULATIONS & LAWS, RECALL CASES STUDY
- 231. PPWR Survival Guide
- 232. New EU rules on packaging and waste will transform its supply chain
- 233. Global Legislation for Food Packaging Materials
- 234. REGULATION (EU) 2025/40 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
- 235. Supporting document 6 International regulatory approaches to chemical migration from packaging into food Proposal P1034 Chemical Migration from Packaging into Food
- 236. Trends on Pre-packed food and Labelling
- 237. L. Minet, Zhanyun Wang et al. "Use and release of per- and polyfluoroalkyl substances (PFASs) in consumer food packaging in U.S. and Canada.." Environmental science. Processes & impacts (2022).
- 241. Proteins: A biodegradable biopolymer for edible films and coating
- 242. North America Market Outlook: Q1 2025
- 243. 包装未来式: 全球包装技术创新前瞻报告 Packaging Future: Global Packaging Technology Innovation Outlook
- 244. Navigating Dynamic Shifts in the Food and Beverage Industry
- 245. Snack Food Packaging Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034
- 246. Ajinomoto Group Factbook 2025

- 247. Biodegradable Packaging Market to Reach USD 168.7 Billion by 2033, Growing at a 5.9% CAGR
- 248. 식품 포장 기술 및 장비 시장
- 249. Market Statistics and Future Trends in Global Packaging
- 250. Corporate social responsibility report Extract from the universal registration document
- 251. 2024-2030 年全球与中国食品包装行业现状全面调研与发展趋势预测报告
- 252. 23rd Euro Global Summit on Food and Beverages
- 253. Gasporox Delårsrapport: April Juni 2025
- 254. 2025-2031 年全球与中国食品和饮料包装市场深度调查与投资前景分析报告
- 255. World Food Trends 2020+ Pan Asian Soy Food Event
- 256. 2008-2009 年中国包装行业研究咨询报告
- 257. Huhtamaki Annual Report 2003
- 258. 2026 年全球食品包装市场将达 6063 亿美元[J].中国包装,2020.
- 259. 2023-2029 年全球与中国食品饮料包装市场深度调查与产业竞争格局报告
- 260. 2024-2030 年全球与中国食品包装市场全景调查与投资战略咨询报告
- 261. Trends 2023
- 262. Adani Wilmar Limited Annual Report 2021-22
- 263. 2026 年全球食品包装市场将达 6063 亿美元[J].中国包装,2020.
- 264. ADANI WILMAR LIMITED
- 265. Horman San, Yeyen Laorenza et al. "Functional Polymer and Packaging Technology for Bakery Products." Polymers (2022).
- 266. 2023-2029 年全球与中国包装食品行业全景调查与未来前景预测报告
- 267. GLOBAL PACKAGING INSIGHTS DEVELOPMENTS AND TRENDS IN GLOBAL PACKAGING
- 268. FUTURE OF PACKAGING AND SUSTAINABILITY
- 269. ΑΠΟΤΥΠΩΣΗ ΤΩΝ ΕΜΠΟΡΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΗΣ ΕΞΥΠΝΗΣ ΚΑΙ ΕΝΕΡΓΟΥ ΣΥΣΚ ΕΥΑΣΙΑΣ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΔΕΚΤΙΚΟΤΗΤΑΣ ΤΟΥΣ ΑΠΟ ΚΑΤΑΝΑΛΩΤΕΣ ΚΑΙ ΒΙΟ ΜΗΧΑΝΙΕΣ ΤΡΟΦΙΜΩΝ
- 270. 机械设备周报 2020年6月第3期
- 271. Advanced Rheology and Its Applications [Working Title].
- 272. 9th Conference on Information and Graphic Arts Technology PROCEEDINGS
- 273. Scientex Berhad Integrated Annual Report 2022
- 274. 规模 6 千亿美元食品包装市场呈现两大发展趋势[J].中国包装,2020.
- 275. G. Kandeepan. "Biodegradable Nanocomposite Packaging Films for Meat and Meat Products: A Review." Journal of Packaging Technology and Research (2021).
- 276. POLYMERS
- 277. Silvia-Amalia Nemeş, K. Szabo et al. "Applicability of Agro-Industrial By-Products in Intelligent Food Packaging." Coatings (2020).
- 278. Nabtesco Value Report 2023
- 279. 全球及中国食品包装材料行业市场数据调研及前景趋势预测报告(2025-2030年)
- 280. RUCHI SOYA INDUSTRIES LIMITED
- 281. Агропродмаш 2023
- 282. Woolworths Group Submission to the ACCC Supermarkets Inquiry 2024-25 Public Response to the Interim Report
- 283. Packaging Innovation Briefing Report December 2023

- 284. Superlist Green 2023: Which supermarkets make sustainable food the easy choice?
- 285. Packaging Innovation Briefing Report April 2023
- 286. WORLDSTAR GLOBAL PACKAGING AWARDS 2023 Official Winners Guide
- 287. Customer oriented logistics at.
- 288. 2023-2029 年全球与中国可持续食品服务包装行业全景调研及发展前景报告
- 289. Shaping tomorrow: The 2,000 most influential companies for the SDGs
- 290. CoverStory: Top 50 Food Packaging Companies
- 291. The PackHub Packaging Innovation Briefing Report for August 2023
- 292. The State of European Foodtech 2024
- 293. Semi-Annual Report 2023
- 301. North America Market Outlook: Q1 2025
- 302. 包装未来式: 全球包装技术创新前瞻报告 Packaging Future: Global Packaging Technology Innovation Outlook
- 303. Annual Report for the Financial Year 2023-24
- 304. Navigating Dynamic Shifts in the Food and Beverage Industry
- 305. 식품 포장 기술 및 장비 시장
- 306. Snack Food Packaging Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034
- 307. 9th Conference on Information and Graphic Arts Technology PROCEEDINGS
- 308. INDEPENDENT MARKET REPORT FOR GEM AROMATICS FINAL REPORT
- 309. 23rd Euro Global Summit on Food and Beverages
- 310. Market Statistics and Future Trends in Global Packaging
- 311. 2024-2030 年全球与中国食品包装行业现状全面调研与发展趋势预测报告
- 312. 中外食品和包装机械 FOOD AND PACKAGING MACHINERY
- 313. Global Packaging Industry A High-Level Overview
- 314. 2025-2031 年全球与中国食品和饮料包装市场深度调查与投资前景分析报告
- 315. Corporate social responsibility report Extract from the universal registration document
- 316. Ajinomoto Group Factbook 2025
- 317. Food Outlook: Biannual report on global food markets
- 318. Huhtamaki Annual Report 2003
- 319. S. Ciano, Mélanie Di Mario et al. "Towards Less Plastic in Food Contact Materials: An In-Depth Overview of the Belgian Market." Foods (2023).
- 320. Banu Bayram, G. Ozkan et al. "Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials." Molecules (2021).
- 321. 2026 年全球食品包装市场将达 6063 亿美元[J].中国包装,2020.
- 322. ΑΠΟΤΥΠΩΣΗ ΤΩΝ ΕΜΠΟΡΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΗΣ ΕΞΥΠΝΗΣ ΚΑΙ ΕΝΕΡΓΟΥ ΣΥΣΚ ΕΥΑΣΙΑΣ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΗΣ ΔΕΚΤΙΚΟΤΗΤΑΣ ΤΟΥΣ ΑΠΟ ΚΑΤΑΝΑΛΩΤΕΣ ΚΑΙ ΒΙΟ ΜΗΧΑΝΙΕΣ ΤΡΟΦΙΜΩΝ
- 323. 9th Conference on Information and Graphic Arts Technology PROCEEDINGS
- 324. 机械设备周报 2020 年 6 月第 3 期
- 325. Scientex Berhad Integrated Annual Report 2022
- 326. ADANI WILMAR LIMITED
- 327. Prospectus dated 21 November 2024
- 328. Horman San, Yeyen Laorenza et al. "Functional Polymer and Packaging Technology for

- Bakery Products." Polymers (2022).
- 329. 2023-2029 年全球与中国包装食品行业全景调查与未来前景预测报告
- 330. GLOBAL PACKAGING INSIGHTS DEVELOPMENTS AND TRENDS IN GLOBAL PACKAGING
- 331. Bram Bamps, Rafael Moreno Macedo Guimaraes et al. "Characterizing Mechanical, Heat Seal, and Gas Barrier Performance of Biodegradable Films to Determine Food Packaging Applications." Polymers (2022).
- 332. Global Packaging Trends: Global Growth Markets for Packaging 2019
- 333. Proceedings of 9th International Symposium on Graphic Engineering and Design. (2018).
- 334. Silvia-Amalia Nemeş, K. Szabo et al. "Applicability of Agro-Industrial By-Products in Intelligent Food Packaging." Coatings (2020).
- 335. Anni Nokelainen. "Elintarvikkeiden pakkausteknologian kaupallistamisen valmistelu."
- 336. Advanced Rheology and Its Applications [Working Title].
- 337. FTA Europe News Issue 26 December 2023
- 338. TOP TO TOP LEADERS COMMUNICATING SOLUTIONS
- 339. Market Research: Food Packaging Market by Material (Paper & Board, Plastic, Glass, Metal), Type (Rigid, Semi-Rigid, Flexible), Application (Dairy, Bakery, Confectionery, Convenience Foods, Fruits, Vegetables, Meat, Sauces, Dressings) Global Trends & Forecast to 2019
- 341. Агропродмаш 2023
- 342. Packaging Innovation Briefing Report December 2023
- 343. Woolworths Group Submission to the ACCC Supermarkets Inquiry 2024-25 Public Response to the Interim Report
- 344. Packaging Innovation Briefing Report April 2023
- 345. CoverStory: Top 50 Food Packaging Companies
- 346. The PackHub Packaging Innovation Briefing Report for August 2023
- 347. Shaping tomorrow: The 2,000 most influential companies for the SDGs
- 348. The State of European Foodtech 2024
- 349. Annual Report 2024
- 350. 2023-2029 年全球与中国可持续食品服务包装行业全景调研及发展前景报告
- 351. WORLDSTAR GLOBAL PACKAGING AWARDS 2023 Official Winners Guide
- 352. Semi-Annual Report 2023
- 353. 全球与中国包装行业研究及市场前景分析报告(2025-2030年)
- 354. Customer oriented logistics at.
- 355. Brand Finance Food & Drink 2023
- 361. INKS & COATINGS for Food Packaging Applications
- 362. 《全球合规快讯》
- 363. REACH24H 2024 ANNUAL REPORT
- 364. Packaging and Packaging Waste Regulation (PPWR) and GS1 Standards White paper on how to use GS1 standards to support recycling use cases
- 365. Cleansing Supply Chains of PFAS 'Forever Chemicals'
- 366. PPWR Survival Guide
- 367. 出口商品技术指南 出口日本、韩国、澳大利亚、新西兰商品包装技术指南
- 368. Packaging Decision-Making for Sustainable Supply Chain: A Case Study at Axis Communications AB

- 369. Improving Transparency of Pre-packaged Food Packaging and Labelling Laws, Regulations and Best Practices: Conference and Compendium
- 370. AUSTRALIAN DAIRY SUSTAINABLE PACKAGING ROADMAP TO 2025
- 371. Food Packaging: A Guide to Best Practice for Sheetfed Offset Print
- 372. New EU rules on packaging and waste will transform its supply chain
- 373. Heather Schwartz-Narbonne, Chunjie Xia et al. "Per- and Polyfluoroalkyl Substances in Canadian Fast Food Packaging." Environmental Science & Technology Letters (2023).
- 374. REGULATION (EU) 2025/40 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
- 381. Market Research: Food Packaging Market by Material (Paper & Board, Plastic, Glass, Metal), Type (Rigid, Semi-Rigid, Flexible), Application (Dairy, Bakery, Confectionery, Convenience Foods, Fruits, Vegetables, Meat, Sauces, Dressings) Global Trends & Forecast to 2019
- 382. 包装未来式: 全球包装技术创新前瞻报告 Packaging Future: Global Packaging Technology Innovation Outlook
- 383. Mondi Group Integrated report and financial statements 2022
- 384. Foodmark. HÅLLBARHETSRAPPORT 2023
- 385. 2025-2031 年全球与中国食品饮料包装市场全景调查与战略咨询报告
- 386. Alisha Cordeiro, Mariya Hussain et al. "Advancements in Packaging Materials: Trends, Sustainability, and Future Prospects." Circular Economy and Sustainability (2025).
- 387. 2023-2029 年全球与中国食品塑料包装行业调查与投资前景报告
- 388. Global Packaging Trends: Global Growth Markets for Packaging 2019
- 389. A. Konstantoglou, D. Folinas et al. "Investigating Food Packaging Elements from a Consumer's Perspective." Foods (2020).
- 390. 2025-2031 年全球与中国聚乙烯休闲食品包装市场全景调查与市场供需预测报告
- 391. 2024-2030 年全球与中国食品包装材料市场现状全面调研与发展趋势分析报告
- 392. Street Litter Audits 2023 Results
- 393. Justine Muller, C. González-Martínez et al. "Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging." Materials (2017).
- 401. ADANI WILMAR LIMITED
- 402. 全球及中国食品包装材料行业市场数据调研及前景趋势预测报告(2025-2030 年)
- 403. GLOBAL PACKAGING INSIGHTS DEVELOPMENTS AND TRENDS IN GLOBAL PACKAGING
- 404. Horman San, Yeyen Laorenza et al. "Functional Polymer and Packaging Technology for Bakery Products." Polymers (2022).
- 405. J. Viitanen, Kirsi Kataja et al. "Elintarvikepakkaaminen muuttaa muotoaan."
- 406. Scientex Berhad Integrated Annual Report 2022
- 407. 2026 年全球食品包装市场将达 6063 亿美元[J].中国包装,2020.
- 408. 2023-2029 年全球与中国包装食品行业全景调查与未来前景预测报告
- 409. Market Research: Food Packaging Market by Material (Paper & Board, Plastic, Glass, Metal), Type (Rigid, Semi-Rigid, Flexible), Application (Dairy, Bakery, Confectionery, Convenience Foods, Fruits, Vegetables, Meat, Sauces, Dressings) Global Trends & Forecast to 2019
- 410. 9th Conference on Information and Graphic Arts Technology PROCEEDINGS
- 411. 机械设备周报 2020年6月第3期
- 412. RUCHI SOYA INDUSTRIES LIMITED

- 413. 식품 포장 기술 및 장비 시장
- 414. Bram Bamps, Rafael Moreno Macedo Guimaraes et al. "Characterizing Mechanical, Heat Seal, and Gas Barrier Performance of Biodegradable Films to Determine Food Packaging Applications." Polymers (2022).
- 415. A. Konstantoglou, D. Folinas et al. "Investigating Food Packaging Elements from a Consumer's Perspective." Foods (2020).
- 416. CDN 龙头受益边缘计算加速落地
- 417. J. Adeyemi, O. A. Fawole. "Metal-Based Nanoparticles in Food Packaging and Coating Technologies: A Review." Biomolecules (2023).
- 421. Packaging Decision-Making for Sustainable Supply Chain: A Case Study at Axis Communications AB
- 422. Cleansing Supply Chains of PFAS 'Forever Chemicals'
- 423. 出口商品技术指南 出口日本、韩国、澳大利亚、新西兰商品包装技术指南
- 424. REACH24H 2024 ANNUAL REPORT
- 425. Royal Decree 1055/2022 on Packaging and Packaging Waste
- 426. Merkblatt: Die neue europäische Verpackungsverordnung (PPWR) 2025
- 427. Packaging and Packaging Waste Regulation (PPWR) and GS1 Standards White paper on how to use GS1 standards to support recycling use cases
- 428. New EU rules on packaging and waste will transform its supply chain
- 429. PPWR Survival Guide
- 430. REGULATION (EU) 2025/40 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
- 431. 一个世界,
- 432. 3Q 2023 RESULTS
- 433. Federated Hermes Global SMID Equity Engagement
- 434. Industrial Symbiosis: Improving productivity through efficient resource management Guide for Businesses in Northern Ireland
- 435. Kraft Heinz 2023 ESG Report
- 436. Response of the Office of Chief Counsel Division of Corporation Finance
- 437. TOGETHER at the TABLE KraftHeinz 2024 ESG Report
- 438. Exxxtend™ technology Exceed™ S Exceed™ XP Enable™ Case study
- 439. 2024 APCO Annual Awards